From Concurrency to Parallelism

an illustrated guide to multi-core parallelism in Clojure

David Edgar Liebke

clojureconj

Durham, NC
23 October 2010

summary

Concurrency is commonly mistaken for parallelism, but the two are distinct
concepts. Concurrency is concerned with managing access to shared state from
different threads, whereas parallelism is concerned with utilizing multiple
processors/cores to improve the performance of a computation.

Clojure has successfully improved the state of concurrent programming with its
many concurrency primitives, and now the goal is to do the same for multi-core
parallel programming, by introducing new parallel processing features that work
with Clojure’s existing data structures.

Clojure’s original parallel processing function, pmap, will soon be joined by pvmap
and pvreduce, based on JSR 166 and Doug Lea’s Fork/Join Framework. From these
building blocks, and the fjvtree function that underlies pvmap and pvreduce, higher-
level parallel functions can be developed.

This talk will provide an illustrated walkthrough of the algorithms underlying pmap,
pvmap, and pvreduce, comparing their strengths, weaknesses, and performance
characteristics; and will conclude with an example of using these primitives to write
a parallel version of Clojure’s filter function.

pmap
algorithm
weaknesses

performance characteristics
chunking
chunked performance characteristics

fork-join
dequeues
basic algorithm

persistent-vector
overview

fjvtree, pvmap, and pvreduce
algorithm
performance characteristics

pvfilter
implementation
performance characteristics

pmap processors: 2 threads: 4

current threads CIEIE1] completed work |l

pPmap processors:2 threads: 4

current threads CIEIE1] completed work |l

pPmap processors:2 threads: 4

The pmap function is semi-lazy, meaning it tries to keep
just enough threads running so that all the processors are
utilized, but doesn’t process its entire input. It does this by

using futures to invoke the function being mapped on just
enough input values, but no more.

current threads CIEIE1] completed work |l

pPmap processors:2 threads: 4

@000
0000
0000
00000000

The pmap function is semi-lazy, meaning it tries to keep
just enough threads running so that all the processors are
utilized, but doesn’t process its entire input. It does this by

using futures to invoke the function being mapped on just
enough input values, but no more.

current threads CIEIE1] completed work |l

pPmap processors:2 threads: 4

@00
000
000
00000000

The pmap function is semi-lazy, meaning it tries to keep
just enough threads running so that all the processors are
utilized, but doesn’t process its entire input. It does this by

using futures to invoke the function being mapped on just
enough input values, but no more.

current threads CIEIE1] completed work |l

pPmap processors:2 threads: 4

@@
00000
00000
00000000

The pmap function is semi-lazy, meaning it tries to keep
just enough threads running so that all the processors are
utilized, but doesn’t process its entire input. It does this by

using futures to invoke the function being mapped on just
enough input values, but no more.

current threads CIEIE1] completed work |l

pPmap processors:2 threads: 4

The pmap function is semi-lazy, meaning it tries to keep
just enough threads running so that all the processors are
utilized, but doesn’t process its entire input. It does this by

using futures to invoke the function being mapped on just
enough input values, but no more.

current threads CIEIE1] completed work |l

pPmap processors:2 threads: 4

The pmap function is semi-lazy, meaning it tries to keep
just enough threads running so that all the processors are
utilized, but doesn’t process its entire input. It does this by

using futures to invoke the function being mapped on just
enough input values, but no more.

current threads CIEIE1] completed work |l

pPmap processors:2 threads: 4

@O0
00000000
00000000
00000000

The pmap function is semi-lazy, meaning it tries to keep
just enough threads running so that all the processors are
utilized, but doesn’t process its entire input. It does this by

using futures to invoke the function being mapped on just
enough input values, but no more.

current threads CIEIE1] completed work |l

pPmap processors:2 threads: 4

@O0
90000000
00000000
00000000

The pmap function is semi-lazy, meaning it tries to keep
just enough threads running so that all the processors are
utilized, but doesn’t process its entire input. It does this by

using futures to invoke the function being mapped on just
enough input values, but no more.

current threads CIEIE1] completed work |l

pPmap processors:2 threads: 4

L ©
90000000
00000000
00000000

The pmap function is semi-lazy, meaning it tries to keep
just enough threads running so that all the processors are
utilized, but doesn’t process its entire input. It does this by

using futures to invoke the function being mapped on just
enough input values, but no more.

current threads CIEIE1] completed work |l

pPmap processors:2 threads: 4

o
00000000
00000000
00000000

The pmap function is semi-lazy, meaning it tries to keep
just enough threads running so that all the processors are
utilized, but doesn’t process its entire input. It does this by

using futures to invoke the function being mapped on just
enough input values, but no more.

current threads CIEIE1] completed work |l

pPmap processors:2 threads: 4

©
00000000
00000000
00000000

The pmap function is semi-lazy, meaning it tries to keep
just enough threads running so that all the processors are
utilized, but doesn’t process its entire input. It does this by

using futures to invoke the function being mapped on just
enough input values, but no more.

current threads CIEIE1] completed work |l

pPmap processors:2 threads: 4

The pmap function is semi-lazy, meaning it tries to keep
just enough threads running so that all the processors are
utilized, but doesn’t process its entire input. It does this by

using futures to invoke the function being mapped on just
enough input values, but no more.

current threads CIEIE1] completed work |l

pPmap processors:2 threads: 4

000050000
00000000

Because pmap is semi-lazy, it is necessary that the process
consuming its output can do so at a faster rate than the
process producing its output, otherwise all the processors

won'’t be utilized.

current threads CIEIE1] completed work |l

20

pPmap processors:2 threads: 4

Because pmap is semi-lazy, it is necessary that the process
consuming its output can do so at a faster rate than the
process producing its output, otherwise all the processors

won'’t be utilized.

current threads CIEIE1] completed work |l

pPmap processors:2 threads: 4

Because pmap is semi-lazy, it is necessary that the process
consuming its output can do so at a faster rate than the
process producing its output, otherwise all the processors

won'’t be utilized.

current threads CIEIE1] completed work |l

pPmap processors:2 threads: 4

Because pmap is semi-lazy, it is necessary that the process
consuming its output can do so at a faster rate than the
process producing its output, otherwise all the processors

won'’t be utilized.

current threads CIEIE1] completed work |l

pPmap processors: 2 threads: 4

Because pmap is semi-lazy, it is necessary that the process
consuming its output can do so at a faster rate than the
process producing its output, otherwise all the processors

won'’t be utilized.

current threads CIEIE1] completed work |l

24

pPmap processors: 2 threads: 4

1 1&
00000000
00000000

Because pmap is semi-lazy, it is necessary that the process
consuming its output can do so at a faster rate than the
process producing its output, otherwise all the processors

won'’t be utilized.

current threads CIEIE1] completed work |l

25

pPmap processors: 2 threads: 4

Because pmap is semi-lazy, it is necessary that the process
consuming its output can do so at a faster rate than the
process producing its output, otherwise all the processors

won'’t be utilized.

current threads CIEIE1] completed work |l

26

pPmap processors: 2 threads: 4

Because pmap is semi-lazy, it is necessary that the process
consuming its output can do so at a faster rate than the
process producing its output, otherwise all the processors

won'’t be utilized.

current threads CIEIE1] completed work |l

27

pPmap processors: 2 threads: 4

Because pmap is semi-lazy, it is necessary that the process
consuming its output can do so at a faster rate than the
process producing its output, otherwise all the processors

won'’t be utilized.

current threads CIEIE1] completed work |l

28

pPmap processors: 2 threads: 4

900 COOHO66
00000000

Because pmap is semi-lazy, it is necessary that the process
consuming its output can do so at a faster rate than the
process producing its output, otherwise all the processors

won'’t be utilized.

current threads CIEIE1] completed work |l

29

pPmap processors: 2 threads: 4

900 COOHO66
00000000

If one or more processors are returning results at a slower
rate than the others, there is no way to redistribute the
load. The more responsive processors will complete their
work and sit idle until the slowest completes and its result

can be consumed.

current threads CIEIE1] completed work |l

31

pPmap processors: 2 threads: 4

000000606
00000000

If one or more processors are returning results at a slower
rate than the others, there is no way to redistribute the
load. The more responsive processors will complete their
work and sit idle until the slowest completes and its result

can be consumed.

current threads CIEIE1] completed work |l

32

pPmap processors: 2 threads: 4

000006
00000000

If one or more processors are returning results at a slower
rate than the others, there is no way to redistribute the
load. The more responsive processors will complete their
work and sit idle until the slowest completes and its result

can be consumed.

current threads CIEIE1] completed work |l

33

pPmap processors: 2 threads: 4

00000
00000000

If one or more processors are returning results at a slower
rate than the others, there is no way to redistribute the
load. The more responsive processors will complete their
work and sit idle until the slowest completes and its result

can be consumed.

current threads CIEIE1] completed work |l

34

pPmap processors: 2 threads: 4

00000
00000000

If one or more processors are returning results at a slower
rate than the others, there is no way to redistribute the
load. The more responsive processors will complete their
work and sit idle until the slowest completes and its result

can be consumed.

current threads CIEIE1] completed work |l

35

pPmap processors: 2 threads: 4

0000
00000000

If one or more processors are returning results at a slower
rate than the others, there is no way to redistribute the
load. The more responsive processors will complete their
work and sit idle until the slowest completes and its result

can be consumed.

current threads CIEIE1] completed work |l

36

pPmap processors: 2 threads: 4

If one or more processors are returning results at a slower
rate than the others, there is no way to redistribute the
load. The more responsive processors will complete their
work and sit idle until the slowest completes and its result

can be consumed.

current threads CIEIE1] completed work |l

37

pPmap processors: 2 threads: 4

9000
00000000

If one or more processors are returning results at a slower
rate than the others, there is no way to redistribute the
load. The more responsive processors will complete their
work and sit idle until the slowest completes and its result

can be consumed.

current threads CIEIE1] completed work |l

38

pPmap processors: 2 threads: 4

1 1&
90000000

If one or more processors are returning results at a slower
rate than the others, there is no way to redistribute the
load. The more responsive processors will complete their
work and sit idle until the slowest completes and its result

can be consumed.

current threads CIEIE1] completed work |l

39

pPmap processors: 2 threads: 4

9O
00000000

If one or more processors are returning results at a slower
rate than the others, there is no way to redistribute the
load. The more responsive processors will complete their
work and sit idle until the slowest completes and its result

can be consumed.

current threads CIEIE1] completed work |l

40

pPmap processors: 2 threads: 4

©
9909000000

If one or more processors are returning results at a slower
rate than the others, there is no way to redistribute the
load. The more responsive processors will complete their
work and sit idle until the slowest completes and its result

can be consumed.

current threads CIEIE1] completed work |l

41

pPmap processors: 2 threads: 4

©
L JOL L L L L

If one or more processors are returning results at a slower
rate than the others, there is no way to redistribute the
load. The more responsive processors will complete their
work and sit idle until the slowest completes and its result

can be consumed.

current threads CIEIE1] completed work |l

42

pPmap processors:2 threads: 4

©
90900 OOOO

If one or more processors are returning results at a slower
rate than the others, there is no way to redistribute the
load. The more responsive processors will complete their
work and sit idle until the slowest completes and its result

can be consumed.

current threads CIEIE1] completed work |l

43

median per-function time (msecs)

pmap compared to map (2 cores)

* results are the median of 50 samples, where a test function was pmapped over a vector of 100 values

pmap performance difference from map (%) pmap performance difference from map (msec)
-1,250 -1,000 -750 -500 -250 0 0 25 50 75 100 125 150 175 200

5.0E4 -
0.0010-
0.0050-
0.01-
0.02 -
0.03-
0.04-
0.05-
0.06-
0.07 -
0.08-
0.09-
.. 0.05<T¢<0.] msec
0.3-

0.5-

45

pPmap processors: 2 threads:4 chunk size: 32

current threads CIEIE1] completed work |l

47

pPmap - processors: 2 threads:4 chunk size: 32

current threads CIEIE1] completed work |l

48

pmap

One strategy for
handling situations
where the consuming
process cannot keep up
with the producing
process, hence
underutilizing the
processors, Is to
partition the input data
into chunks and pass
those to pmap instead
of individual values.

processors: 2 threads:4 chunk size: 32

current threads CIEIE1]

49

completed work | HIIIEN

pmap

processors: 2 threads:4 chunk size: 32

pmap over chunks

(pmap (fn [chunk] (map f chunk))
(partition 32 coll)))

current threads CIEIE1] completed work NI

50

processors: 2 threads:4 chunk size: 32

pmap

One strategy for

handling situations 00000000 00000000 00000006 23383388
: c00000ee cocccses 3322333: 4444444

where the CONSUMING — yy0y0eas gesasens sessssss sssssess
prpcess cannot l.<eep UDP 89232928 25292958 29592928 s929s9se
Wlth the producmg 00000000 00000000 00000000 00000000
00000000 00000000 00000000 o0000OCOCGONO

process, hence 00000000 00000cec cocececs cccccece
underutilizing the 00000000 00000000 00000000 00000000
, 00000000 00000000 00000000 00000000
processors, IS tO 00000000 00000000 00000000 00000OCGOKS
partition the input data 00000000 00000000 00000000 00000000
. 00000000 00000000 00000000 00000000
Into Chunks and paSS 00000000 00000000 00000000 o00000OCOCFO
. 00000000 00000000 00000000 o0000OCGOCGFOCFS

those to pmap instead 33359888 22592522 25225228 S22522ss
of individual values. 03000500 23352208 53333330 23%9%3%
00000000 00000000 00000000 0000OCGOCGFOO

00000000 00000000 00000000 00000OOCGONO

current threads CIEIE1]

51

completed work | HIIIEN

pmap

One strategy for
handling situations
where the consuming
process cannot keep up
with the producing
process, hence
underutilizing the
processors, Is to
partition the input data
into chunks and pass
those to pmap instead
of individual values.

processors: 2 threads:4 chunk size: 32

current threads CIEIE1]

52

completed work | HIIIEN

processors: 2 threads:4 chunk size: 32

pmap

One strategy for
handling situations
where the consuming
process cannot keep up
with the producing

process, hence
underutilizing the
processors, Is to
partition the input data
into chunks and pass
those to pmap instead
of individual values.

current threads CIEIE1]

53

completed work | HIIIEN

pmap

One strategy for
handling situations
where the consuming
process cannot keep up
with the producing
process, hence
underutilizing the
processors, Is to
partition the input data
into chunks and pass
those to pmap instead
of individual values.

processors: 2 threads:4 chunk size: 32

current threads CIEIE1]

54

completed work | HIIIEN

processors: 2 threads:4 chunk size: 32

pmap

One strategy for

handling situations s333333e
Where the Consumlng 00000000 00000000 000OOCGOOGO ::::::::
process cannot keep Up Seesesse ssescsse ssescsse ssesssss
. . 00000000 00000000 00000000 o00000O0OCOKOC
Wlth the producmg 00000000 00000000 00000000 00000000
00000000 00000000 00000000 o0000OCOCGONO

process, hence 00000000 00000000 00000000 o000000e
underutilizing the 00000000 00000000 00000000 00000000
. 00000000 00000000 00000000 o00000OCOCKO

processors, IS tO 00000000 00000000 00000000 00000OCGOKS
partition the input data 00000000 00000000 00000000 00000000
. 00000000 00000000 00000000 00000000
Into Chunks and paSS 00000000 00000000 00000000 o00000OCOCFO
. 00000000 00000000 00000000 o0000OCGOCGFOCFS

those to pmap instead 33359888 22592522 25225228 S22522ss
of individual values. 93333222 23222223 33333332 23233322
00000000 00000000 00000000 0000OCGOCGFOO

00000000 00000000 00000000 00000OOCGONO

current threads CIEIE1]

55

completed work | HIIIEN

pmap

One strategy for
handling situations
where the consuming
process cannot keep up
with the producing
process, hence
underutilizing the
processors, Is to
partition the input data
into chunks and pass
those to pmap instead
of individual values.

processors: 2 threads:4 chunk size: 32

current threads CIEIE1]

56

completed work | HIIIEN

chunk sizes for 512 element vector

chunked pmap compared to map (2 cores)

* results are the median of 500 samples, where a test function (duration < 0.005 msec) was pmapped over chunked vectors of 512 values

chunked pmap performance difference from map (%) chunked pmap performance difference from map (msec)

2 9K 2 N0 nnn
.40 3.00 AV e VAR L.LD < Uu.2o U.0u U.45

2.75 -2.50 -2.25 -2.00 -1.75 -1.50 -1.25 -1.00 -0.75 -0.50 -0.25 0.25 0.50 1.75 1.50 1.25 1.00 0.75 0.50 0.25 0.00 0.25

chunk < |0

16 -

chunk sizes for 512 element vector

|0 < chunk < 50

64 -

128 -

T¢> 50

57

dequeue double-ended queue

A dequeue (pronounced “deck”) is a double-ended queue,
where values can be pushed and popped off the front or
taken from the back. The Fork-Join algorithm systematically
divides a job into tasks that are pushed onto the dequeue,
resulting in the largest tasks being located at the back,
which in turn improves the efficiency of its work-stealing
algorithm.

60

dequeue split

A dequeue (pronounced “deck”) is a double-ended queue,
where values can be pushed and popped off the front or
taken from the back. The Fork-Join algorithm systematically
divides a job into tasks that are pushed onto the dequeue,
resulting in the largest tasks being located at the back,
which in turn improves the efficiency of its work-stealing
algorithm.

61

dequeue push

A dequeue (pronounced “deck”) is a double-ended queue,
where values can be pushed and popped off the front or
taken from the back. The Fork-Join algorithm systematically
divides a job into tasks that are pushed onto the dequeue,
resulting in the largest tasks being located at the back,
which in turn improves the efficiency of its work-stealing
algorithm.

62

dequeue

A dequeue (pronounced “deck”) is a double-ended queue,
where values can be pushed and popped off the front or
taken from the back. The Fork-Join algorithm systematically
divides a job into tasks that are pushed onto the dequeue,
resulting in the largest tasks being located at the back,
which in turn improves the efficiency of its work-stealing
algorithm.

63

dequeue split

A dequeue (pronounced “deck”) is a double-ended queue,
where values can be pushed and popped off the front or
taken from the back. The Fork-Join algorithm systematically
divides a job into tasks that are pushed onto the dequeue,
resulting in the largest tasks being located at the back,
which in turn improves the efficiency of its work-stealing
algorithm.

64

dequeue push

A dequeue (pronounced “deck”) is a double-ended queue,
where values can be pushed and popped off the front or
taken from the back. The Fork-Join algorithm systematically
divides a job into tasks that are pushed onto the dequeue,
resulting in the largest tasks being located at the back,
which in turn improves the efficiency of its work-stealing
algorithm.

65

dequeue

A dequeue (pronounced “deck”) is a double-ended queue,
where values can be pushed and popped off the front or
taken from the back. The Fork-Join algorithm systematically
divides a job into tasks that are pushed onto the dequeue,
resulting in the largest tasks being located at the back,
which in turn improves the efficiency of its work-stealing
algorithm.

66

dequeue split

A dequeue (pronounced “deck”) is a double-ended queue,
where values can be pushed and popped off the front or
taken from the back. The Fork-Join algorithm systematically
divides a job into tasks that are pushed onto the dequeue,
resulting in the largest tasks being located at the back,
which in turn improves the efficiency of its work-stealing
algorithm.

67

dequeue push

A dequeue (pronounced “deck”) is a double-ended queue,
where values can be pushed and popped off the front or
taken from the back. The Fork-Join algorithm systematically
divides a job into tasks that are pushed onto the dequeue,
resulting in the largest tasks being located at the back,
which in turn improves the efficiency of its work-stealing
algorithm.

68

dequeue

A dequeue (pronounced “deck”) is a double-ended queue,
where values can be pushed and popped off the front or
taken from the back. The Fork-Join algorithm systematically
divides a job into tasks that are pushed onto the dequeue,
resulting in the largest tasks being located at the back,
which in turn improves the efficiency of its work-stealing
algorithm.

69

dequeue compute

A dequeue (pronounced “deck”) is a double-ended queue,
where values can be pushed and popped off the front or
taken from the back. The Fork-Join algorithm systematically
divides a job into tasks that are pushed onto the dequeue,
resulting in the largest tasks being located at the back,
which in turn improves the efficiency of its work-stealing
algorithm.

70

dequeue

A dequeue (pronounced “deck”) is a double-ended queue,
where values can be pushed and popped off the front or
taken from the back. The Fork-Join algorithm systematically
divides a job into tasks that are pushed onto the dequeue,
resulting in the largest tasks being located at the back,
which in turn improves the efficiency of its work-stealing
algorithm.

71

dequeue pop

A dequeue (pronounced “deck”) is a double-ended queue,
where values can be pushed and popped off the front or
taken from the back. The Fork-Join algorithm systematically
divides a job into tasks that are pushed onto the dequeue,
resulting in the largest tasks being located at the back,
which in turn improves the efficiency of its work-stealing
algorithm.

72

dequeue work stealing

A dequeue (pronounced “deck”) is a double-ended queue,
where values can be pushed and popped off the front or
taken from the back. The Fork-Join algorithm systematically
divides a job into tasks that are pushed onto the dequeue,
resulting in the largest tasks being located at the back,
which in turn improves the efficiency of its work-stealing
algorithm.

73

dequeue take

A dequeue (pronounced “deck”) is a double-ended queue,
where values can be pushed and popped off the front or
taken from the back. The Fork-Join algorithm systematically
divides a job into tasks that are pushed onto the dequeue,
resulting in the largest tasks being located at the back,
which in turn improves the efficiency of its work-stealing
algorithm.

74

fork-join workers: 4 branching factor:2 sequential threshold: 256

Fork-Join is a divide- i sisaese saaesass sesassss sssassas sassasss sssasses sassasss

and_Conquer oo

algorithm that == 8 a3aassss aassssss sassssss aisessss aisessss aitsssss ssssssss

Iteratlvely leldeS Q ~ %eeee8es sessiies scsesees eseccese sesccses eccesess eeeccese esesecse

job iNto smaller ang $9888ss 8883888 3333388 333203 $3ULL2T $22223T 22333388 23338

task is below a i I NN I N R SN

configured $issses 23sossce 3333 $3%%%%e 8323230 25SETss s3SI 2333%Re:

threshold. $332533 3333250 3338800 I3 38333038 228Essse seRNaNe Ssssnnn:

worker deques [CICIC][] current tasks CIEEL] completed tasks [INIRIEM

76

fork-join workers: 4 branching factor:2 sequential threshold: 256

Fork-Join is a divide-
and-conquer
algorithm that
iteratively divides a
job into smaller and
smaller tasks,
placing them on a
dequeue, until the
size of the current
task is below a
configured

threshold.

worker deques CJCIC] current tasks CIEEC] completed tasks IR

77

fork-join workers: 4 branching factor:2 sequential threshold: 256

Fork-Join is a divide-
and-conquer
algorithm that
iteratively divides a
job into smaller and
smaller tasks,
placing them on a
dequeue, until the
size of the current
task is below a
configured

threshold.

push

worker deques CJCIC] current tasks CIEEC] completed tasks IR

78

fork-join workers: 4 branching factor:2 sequential threshold: 256

Fork-Join is a divide- pUSh

and-conquer

algorithm that

iteratively divides a

job into smaller and

smaller tasks, 2048
placing them on a
dequeue, until the
size of the current
task is below a
configured

threshold.

worker deques C1CJJ[C] current tasks CIEJEIC] completed tasks IR

79

fork-join workers: 4 branching factor:2 sequential threshold: 256

1024

As one worker is

processing its tasks,
another worker can
steal a task from the
back of its dequeue.

worker deques [CICIC][] current tasks CIEEL] completed tasks [INIRIEM

80

fork-join workers: 4 branching factor:2 sequential threshold: 256

1024 push

As one worker is

processing its tasks,
another worker can
steal a task from the
back of its dequeue.

worker deques CJCIC] current tasks CIEEC] completed tasks IR

8l

fork-join workers: 4 branching factor:2 sequential threshold: 256

take
As one worker is
processing its tasks,

another worker can
steal a task from the
back of its dequeue.

worker deques [CICIC][] current tasks CIEEL] completed tasks [INIRIEM

82

fork-join workers: 4 branching factor:2 sequential threshold: 256

push
another worker can
steal a task from the
back of its dequeue.
push push

512 || push
As one worker is
processing its tasks,

worker deques CJCIC] current tasks CIEEC] completed tasks IR

83

fork-join workers: 4 branching factor:2 sequential threshold: 256

512 512
As one worker is
processing its tasks,
another worker can
steal a task from the
back of its dequeue. push push

worker deques C1CJJ[C] current tasks CIEJEIC] completed tasks IR

84

fork-join workers: 4 branching factor:2 sequential threshold: 256

512
smaller than the
configured
threshold, it will
begin the intended
computation. 5|12

Once each worker’s |compute
current task is

worker deques CJCIC] current tasks CIEEC] completed tasks IR

8

(0]

fork-join workers: 4 branching factor:2 sequential threshold: 256
I
I

worker deques C1CJJ[C] current tasks CIEJEIC] completed tasks IR

86

completed for the
current task, the
worker will pop
another task off of its
dequeue...

Once the compute
computation Is

fork-join workers: 4 branching factor:2 sequential threshold: 256
I
I

worker deques C1CJJ[C] current tasks CIEJEIC] completed tasks IR

87

... and perform the compute
computation on it.

fork-join workers: 4 branching factor:2 sequential threshold: 256

been completed for
at least two tasks, the
results can be
combined with a join
function.

512
After the compute
computation has

worker deques [CICIC][] current tasks CIEEL] completed tasks [INIRIEM

88

fork-join workers: 4 branching factor:2 sequential threshold: 256

worker deques C1CJJ[C] current tasks CIEJEIC] completed tasks IR

89

256 push

And so on... compute

push

push

fork-join workers: 4 branching factor:2 sequential threshold: 256

B - II

worker deques C1CJJ[C] current tasks CIEJEIC] completed tasks IR

90

fork-join workers: 4 branching factor:2 sequential threshold: 256

worker deques C1CJJ[C] current tasks CIEJEIC] completed tasks IR

91

256

And so on... compute

fork-join workers: 4 branching factor:2 sequential threshold: 256

worker deques C1CJJ[C] current tasks CIEJEIC] completed tasks IR

92

256

And so on... compute

fork-join workers: 4 branching factor:2 sequential threshold: 256

B - II

worker deques C1CJJ[C] current tasks CIEJEIC] completed tasks IR

93

fork-join workers: 4 branching factor:2 sequential threshold: 256

worker deques C1CJJ[C] current tasks CIEJEIC] completed tasks IR

94

256

And so on... compute

fork-join workers: 4 branching factor:2 sequential threshold: 256

If one of the workers
falls behind, another
worker can take
tasks from its
dequeue.

worker deques C1CJJ[C] current tasks CIEJEIC] completed tasks IR

95

fork-join workers: 4 branching factor:2 sequential threshold: 256

If one of the workers
falls behind, another

worker can take
tasks from its
dequeue.

worker deques C1CJJ[C] current tasks CIEJEIC] completed tasks IR

96

fork-join workers: 4 branching factor:2 sequential threshold: 256

If one of the workers
falls behind, another
worker can take
tasks from its
dequeue.

worker deques C1CJJ[C] current tasks CIEJEIC] completed tasks IR

97

fork-join workers: 4 branching factor:2 sequential threshold: 256

: I

worker deques C1CJJ[C] current tasks CIEJEIC] completed tasks IR

98

If one of the workers
falls behind, another
worker can take
tasks from its
dequeue.

fork-join workers: 4 branching factor:2 sequential threshold: 256

= II

worker deques C1CJJ[C] current tasks CIEJEIC] completed tasks IR

99

If one of the workers
falls behind, another
worker can take
tasks from its
dequeue.

fork-join workers: 4 branching factor:2 sequential threshold: 256

worker deques CJCIC] current tasks CIEEC] completed tasks IR

100

And so on...

fork-join workers: 4 branching factor:2 sequential threshold: 256

And so on...

worker deques CJCIC] current tasks CIEEC] completed tasks IR

101

fork-join workers: 4 branching factor:2 sequential threshold: 256

And so on...

worker deques C1CJJ[C] current tasks CIEJEIC] completed tasks IR

102

fork-join workers: 4 branching factor:2 sequential threshold: 256

And so on...

worker deques [CICIC][] current tasks CIEEL] completed tasks [INIRIEM

103

fork-join workers: 4 branching factor:2 sequential threshold: 256

... until the job is
complete.

worker deques (][] current tasks CIEIE] completed tasks IIRIEE

|04

persistent-vector

count: 0
shift: 5

A PersistentVector
contains a root
and a tail; the tail
is an array that
can contain up to
32 Object
references, and
the root is a Node
that can contain
up to 32 child
Nodes.

106

root node []|

tail []
nodes [1[]

objrefs @
selected @

persistent-vector

count: 32
shift: 5

Values are added
to the tail...

|07

root node []|

tail []
nodes [][]
objrefs @

selected @

persistent-vector

count: 33
shift: 5

... until the tail is
full, then a new
Node is created,
containing the 32
Object references
from the tail, and

| root node []
inserted as a child

of the root. tail []
nodes [1[]
objrefs @

selected @

108

persistent-vector

count: 1025
shift: 5

Once the root is
full, a new root
Node is created,
and the existing
one is added as a

child.

109

root node []|

tail []
nodes [][]
objrefs @

selected @

persistent-vector

count: 1057
shift; 10

Once the root is
full, a new root
Node is created,
and the existing
one is added as a

child.

110

root node []|

tail []
nodes [1[]

objrefs @
selected @

persistent-vector

count: 2049
shift; 10

And so on...

root node [_]

tail []
nodes [][]
objrefs @

selected @

count: 208

shift: 10

persistent-vector

L

L

L

L
]

And so on...

L
'
L
A

root node [_]

tail []
nodes [1[]

objrefs @
selected @

EEEL_JL_JL_]
| I -
| I -
| I -
| I -
| I -
| I -
L L LI

112

persistent-vector

count: 3073
shift; 10

And so on...

113

root node [_]

tail []
nodes [][]
objrefs @

selected @

count: 3105

shift: 10

persistent-vector

]
L
|
L

]

L

o

B

And so on...

o

root node [_]

tail []
nodes [1[]

objrefs @
selected @

EEEL_JL_JL_]
| | -
| | -
| | -
| | -
| | -
| | -
LI JC_ L]

persistent-vector

count: 4097
shift; 10

And so on...

root node [_]

tail []
nodes [][]
objrefs @

selected @

fjvtree workers: 4 branching factor:32 sequential threshold: 32

The core Fork_JOi [8833333 33333333 23333333 23333338 33333333 23333338 83338338 33333833

algorithm in oo

CIOJUI‘e IS oo

implemented in S ———

the fjvtree s33ss8% ssssssss ssssssss ssssssss gsssssss ssssssss ssssssss ssssssss
function, which GH R R R H R R
uses the
underlying tree
structure of

PersistentVector to 00000000 00000000 S00000s coccesse cooscces ocoscces ocescces ocsscces

break jobs into o

tasks. it i et s e s s e

worker deques [CICIC][] current tasks CIEEL] completed tasks [INIRIEM

117

fjvtree workers: 4 branching factor: 32 sequential threshold: 32

fork-join based
map and reduce
on vectors

(pvmap f v) (pvreduce f v)

implemented with

\‘ (fjvtree v combine-fn leaf-fn)

worker deques C1CJJ[C] current tasks CIEJEIC] completed tasks IR

118

fjvtree workers: 4 branching factor:32 sequential threshold: 32

The core Fork-Join
algorithm in
Clojure is
implemented in
the fjvtree
function, which
uses the
underlying tree
structure of
PersistentVector to
break jobs into
tasks.

worker deques CJCIC] current tasks CIEEC] completed tasks IR

119

fjvtree workers: 4 branching factor: 32 sequential threshold: 32

The core Fork-Join
algorithm N PUSh PUSh
Clojure is
implemented in
the fjvtree
function, which
uses the
underlying tree
structure of
PersistentVector to
break jobs into
tasks.

push

worker deques C1CJJ[C] current tasks CIEJEIC] completed tasks IR

120

fjvtree workers: 4 branching factor: 32 sequential threshold: 32

The core Fork-Join

algorithm in | 024 1024
Clojure is

implemented in

the fjvtree

function, which

uses the | |
underlying tree
structure of
PersistentVector to 1024
break jobs into
tasks.

worker deques C1CJJ[C] current tasks CIEJEIC] completed tasks IR

121

fjvtree workers: 4 branching factor: 32 sequential threshold: 32

The core Fork-Join
algorithm in | 024 1024
Clojure is
implemented in
the fjvtree
function, which
uses the
underlying tree
structure of
PersistentVector to
break jobs into
tasks.

w
N

w
N
w
N9
w
N
w
N

w
N

w
N
w
N

w
N
w
N9
w
N
w
N

w
N
w
N
w
N
w
N

1024

w
N
w
N
w
N
w
N

w
N
w
N9
w
N
w
N

w
N
w
N
w
N
w
N

w
N
w
N9
w
N

worker deques C1CJJ[C] current tasks CIEJEIC] completed tasks IR

122

fjvtree workers: 4 branching factor:32 sequential threshold: 32

leaf-fn: pvmap

1024 \
(fn ["PersistentVector$Node node]
(new-node
V (amap (.array node)
iiii ia
(f (aget a 1)))))
ST
| B | B
EN | EN | EE | E
EN | EN|EN|ER
EN | EN|EN|ER

worker deques CJCIC] current tasks CIEEC] completed tasks IR

123

fjvtree workers: 4 branching factor: 32 sequential threshold: 32

—
B

///’/

/ " leaf-fn: pvreduce

(fn ["PersistentVector$Node node]
(let [a (.array node)]
(Loop [ret (aget a 0)
i (int 1)1
(if (< i 32)
(recur (f ret (aget a i))
(inc 1))

ret))))

worker deques C1CJJ[C] current tasks CIEJEIC] completed tasks IR

124

fjvtree workers: 4 branching factor:32 sequential threshold: 32

The core Fork-Join
algorithm in take
Clojure is
implemented in
the fjvtree
function, which
uses the
underlying tree
structure of
PersistentVector to
break jobs into
tasks.

w

w w
N N
w w
N N
w w
N N

w
N
w
N
w
N
w
N

w
N
w
N
w
N
w
N

w
N
w
N
w
N
w
N

w
N
w
N
w
N
w
N

w
N
w
N
w
N
w
N

w
N
w
N
w
N
w
N

worker deques CJCIC] current tasks CIEEC] completed tasks IR

125

fivtree

The core Fork-Join
algorithm in
Clojure is
implemented in
the fjvtree
function, which
uses the
underlying tree
structure of
PersistentVector to
break jobs into
tasks.

worker deques C1JJ[C] current tasks I

®)
=
A
o
)
W
N
o
=
Q)
>
o
=,
S
(04¢]
Sk
o
c—
®)
».
w
N
n
®
0
c
o
>
C"
&
c—
S
-
M
»n
>
o
o
w
N

push
push
push
push
push
push

push

w
N

push
push
push
push
push
push
push

push

w w w w w w w
N N N N N N N

w
N9

push
push
push
push
push
push
push

push

w w w w w w w
N N N N N N N

w
N

push
push
push
push
push
push
push

push

w
N

32

32

32

32

3

N

32

w

2

12

6

push
push
push
push
push
push

push

push
push
push
push
push

push

push

push push

push push
push push
push push
push push
push push
push push
push push
push push
push push
push push
push push
push push
push push
push push

push push

[

push
push
push
push
push
push
push
push
push
push
push
push
push
push
push

push

completed tasks IR

o o o o o o o o o o o o o o o o
o™ o™ o™ o™ o™ o™ o™ o™ o o™ o o™ o o™ o o™
o™ o™ o™ o™ o™ o™ o™ o™ o (e8] o (e8] o (e8] o (e8]

o™ o™ o™ o™ o™ o™ o™ o™ o o™ o o™ o o™
o (a8 o (a8 o (a8 o (a8 o o™ o o™ o o™ o o™
oN o™ oN o™ oN o™ oN o™ o o o o o o o o
oN o oN o oN o oN o o o o o o o o o

(ap] o o™ o o™ o o™ o o o o o o o

comp

workers: 4 branching factor: 32 sequential threshold: 32

C @)
m —
“
Q - = 5 Q S o
7 = % ==
() S C |m = = %.m
. rnm.l = W 0.0r_nlu.vs
= cao 5L 0 c = O
S L EQ Cc oz S0
© mm— C.lue.V.UtrtSk o
e m.JIfUCSGC.IaS
egopenedumek

worker deques C1CJJ[C] current tasks CIEJEIC] completed tasks IR

127

o o o o o o o o o o o o o o o o
o™ o™ o™ o™ o™ o™ o™ o™ o o™ o o™ o o™ o o™
o™ o™ o™ o™ o™ o™ o™ (e8] o (e8] o (e8] o (e8]
o™ o™ o™ o™ o™ o™ o™ o™ o o™ o o™ o o™
o (a8 o (a8 o (a8 o (a8 o o™ o o™ o o™ o o™
oN o™ oN o™ oN o™ oN o™ o o o o o o o o
o oN o oN o oN o o o o o o o o
(ap] o o™ o o™ o o™ o o o o o o o

workers: 4 branching factor: 32 sequential threshold: 32

C @)
m —
“
Q - = 5 Q S o
7 = % ==
() S C |m = = %.m
. rnm.l = W 0.0r_nlu.vs
= cao 5L 0 c = O
S L EQ Cc oz S0
© mm— C.lue.V.UtrtSk o
e m.JIfUCSGC.IaS
egopenedumek

worker deques C1CJJ[C] current tasks CIEJEIC] completed tasks IR

128

fivtree

®)
=
A
o
)
n
N
o
=
Q)
>
o
=,
S
(04¢]
Sk
o
c—
®)
».
w
N
n
®
0
c
o
>
C"
&
c—
S
-
M
»n
>
o
o
w
N

NS
w
N
w
N
w
N

comp

w
N
N
N
N
w
N
w
N
N
N

w w w
N N N N N N N N N
w w w w
N N N N N N N N N N
w w
N
w
N
N
W
W

The core Fork-Join
algorithm in
Clojure is
implemented in
the fjvtree
function, which
uses the
underlying tree
structure of
PersistentVector to
break jobs into
tasks.

w
N
w
w
w
w
N
w
N
w
w

w
w
w
NS
w
N
w
N
w
w
N
w
N

w
w
w
N
w
N
w
N
w
w
N
w
N

w
N

w

w
N
w
N
w
N
w
N

w
w
w
N
w
N
w
N
w
w
N
w
N

w
w
w
N
w
N
w
N
w
w
N
w
N

w
w
w
N
w
N
w
N
w
w
N

w
w w w w
w w w
N N N N N

w
N

w
w
w
w
w
N
w
w
w

w
N
w
N9
w
w
w
N
w
N
w
w

N
N
N
N
N
N
N
N

w
w w w w
N N N N N
w w w
N N N N N
w
N

w

N

w

N

w

N

w W

N NS

w w w W

N N

w w w w
W

N N

w

N

worker deques C1JJ[C] current tasks I

129

[

completed tasks IR

fjvtree workers: 4 branching factor: 32 sequential threshold: 32

=1 [eSlem| | =
The core Fork-Join
el
e
e
the fjvtree
function, which
uses the - |]
underlying tree
structure of
PersistentVector to
break jobs into
tasks.

worker deques C1JJ[C] current tasks I

130

[

completed tasks IR

fjvtree workers: 4 branching factor: 32 sequential threshold: 32

1 [enl=m] | =
The core Fork-Join
el
e
e
the fjvtree
function, which
uses the | |emEw] | [
underlying tree
structure of
PersistentVector to
break jobs into
tasks.

worker deques C1JJ[C] current tasks I

13

[

completed tasks IR

fivtree

®)
=
A
o
)
n
N
o
=
Q)
>
o
=,
S
(04¢]
Sk
o
c—
®)
».
w
N
n
®
0
c
o
>
‘2
&
c—
S
-
M
»n
>
o
o
w
N

w
N
w
N
w
N
N
w
N
w
N
w
N
w
N

N
N
N
w
N
N
N
N
N

The core Fork-Join
algorithm in
Clojure is
implemented in
the fjvtree
function, which
uses the
underlying tree
structure of
PersistentVector to
break jobs into
tasks.

w
N
w
N
w
N
w
w
N
w
N
w
N
w
N

w
w
w
w
w
N
w
w
w

w
w
w
w
w
N
w
w
w

w
w
w
w
w
N
w
w
w

w
w
w
w
w
N
w
w
w

w
w
w
w
w
N
w
w
w

w
w
w
w
w
N
w
w
w

w
w
w
w
w
N
w
w
w

w
N
w
N9
w
N
w
N
w
N
w
N
w
N
w
N

N
N
N
N
N
N
N
N

w w w w
N N N N N N N N N

w w W W
N N N N N N N N N

w w W W
N N N N N N N N N

w w W w
w w w W
N N

w w w w
W w W W
w w w w
N N N N N N N N N

worker deques C1JJ[C] current tasks I

132

[

completed tasks IR

fivtree

®)
=
A
o
)
n
N
o
=
Q)
>
o
=,
S
(04¢]
Sk
o
c—
®)
».
w
N
n
®
0
c
o
>
‘2
&
c—
S
-
M
»n
>
o
o
w
N

comp

w
N
w
N
w
N
N
w
N
w
N
w
N
w
N

N
N
N
w
N
N
N
N
N

The core Fork-Join
algorithm in
Clojure is
implemented in
the fjvtree
function, which
uses the
underlying tree
structure of
PersistentVector to
break jobs into
tasks.

w
N
w
N
w
N
w
w
N
w
N
w
N
w
N

w
w
w
w
w
N
w
w
w

w
w
w
w
w
N
w
w
w

w
w
w
w
w
N
w
w
w

w
w
w
w
w
N
w
w
w

w
w
w
w
w
N
w
w
w

w
w
w
w
w
N
w
w
w

w
w
w
w
w
N
w
w
w

w
N
w
N9
w
N
w
N
w
N
w
N
w
N
w
N

N
N
N
N
N
N
N
N

w w w w
N N N N N N N N N

w w W W
N N N N N N N N N

w w W W
N N N N N N N N N

w w W w
w w w W
N N

w w w w
W w W W
w w w w
N N N N N N N N N

worker deques C1JJ[C] current tasks I

13

[

completed tasks IR

w

fivtree

The core Fork-Join
algorithm in
Clojure is
implemented in
the fjvtree
function, which
uses the
underlying tree
structure of
PersistentVector to
break jobs into
tasks.

workers: 4 branching factor: 32 sequential threshold: 32
T
T
T
T
T
T
T
L e | (e
- rrrrr
-t rr1rrr
- rrrrr
-t rr1rrr
- rrrrr
-t rr1rrr
- rrrrr
| | |eml | | e
CIEOC] completed tasks NS

worker deques][] current tasks

|34

fivtree

®)
=
A
o
-
n
N
o
)
Q)
>
o
=2
S
(04¢]
Sk
o
c—t
®)
.
w
N
n
®
0
c
o
>
‘;'
&
c—
S
R
M
»n
>
o
o
w
N

The core Fork-Join
algorithm in
Clojure is
implemented in
the fjvtree
function, which
uses the
underlying tree
structure of
PersistentVector to
break jobs into
tasks.

comp

.

worker deques][] current tasks

135

completed tasks IR

fjvtree workers: 4 branching factor:32 sequential threshold: 32

uses the
underlying tree
structure of
PersistentVector to
break jobs into
tasks.

The core Fork-Join
algorithm in
Clojure is
implemented in
the fjvtree
function, which

worker deques [CICIC][] current tasks CIEEL] completed tasks [INIRIEM

136

fivtree kers:4 branching face=" =l threshold: 32
J workers ranc mg/a; \res o

combine-fn: pvmap

(fn [coll]
(new-node (to-array coll))))

worker deques C1CJCJ[C] current tasks EJEJEIL] completed tasks IR

137

fivtree kers:4 branching face=" il threshold: 32
] workers ranc mg/a; \J\res o

combine-fn: pvreduce

(fn [colll]
(reduce f coll))

worker deques C1CJJ[C] current tasks CIEJEIC] completed tasks IR

138

fjvtree workers: 4 branching factor:32 sequential threshold: 32

uses the
underlying tree
structure of
PersistentVector to
break jobs into
tasks.

The core Fork-Join
algorithm in
Clojure is
implemented in
the fjvtree
function, which

worker deques [CICIC][] current tasks CIEEL] completed tasks [INIRIEM

139

fjvtree workers: 4 branching factor:32 sequential threshold: 32

The core Fork-Join
algorithm in
Clojure is
implemented in
the fjvtree
function, which
uses the
underlying tree
structure of
PersistentVector to
break jobs into
tasks.

worker deques [CICIC][] current tasks CIEEL] completed tasks [INIRIEM

140

fjvtree workers: 4 branching factor: 32 sequential threshold: 32

The core Fork-Join
algorithm in
Clojure is
implemented in
the fjvtree
function, which
uses the
underlying tree
structure of
PersistentVector to
break jobs into
tasks.

worker deques (][] current tasks CIEIE] completed tasks IIRIEE

141

median per-function time (msecs)

pvimap compared to map (2 cores)

* results are the median of 50 samples, where a test function was pvmapped over a vector of 100 values

pvmap performance difference from map (%) pvmap performance difference from map (msec)

go -75 -70 -65 -60 -55 -50 45 40 -35 -30 -25 -20 -15 -10 -5 O 5 10 15 20 25 30 0 10 20 30 40 50 60 70 80 90 100 110

5.0E-4 5.0E-4 -
0.0010 0.0010-
0.0050 0.0050 -
.01 - 0.01-
).02 0.02-
.03 0.03-
~~
.04 - 0.04-
[+ < 0.05 msec :
e —
).05 - ps 0.05 -
E
-~
).0 - 0.06 -
2
©
.07 S 0.07-
N—
5
).08 - = 0.08 -
=
8
— ? 0.09 -
005 <T:¢<0.] msec
0. 0.3-
).5 0.5-
1- Tle
2 2-
4- 4-

T¢> 0.1 msec

143

median per-function time (msecs)

pvimap VS pmap compared to map (2 cores)

* results are the median of 50 samples, where a test function was p*mapped over a vector of 100 values

performance difference from map (%) performance difference from map (msec)
-1,250 -1,000 -750 -500 -250 0 0 25 50 75 100 125 150 175 200

5.0E4 -
0.0010-
0.0050 -
0.01-
0.02-
0.03-
0.04 -
0.05-
0.06-
0.07 -
0.08-
0.05 <T¢< 0.l msec
0.3-

0.5-

M pmap M pvmap M pmap M pvmap

144

median per-function time (msecs)

pvreduce compared to reduce (2 cores)

* results are the median of 50 samples, where a test function was pvreduced over a vector of 100 values

performance difference from reduce (%) performance difference from reduce (msec)

50 45 40 35 30 25 20 15 10 5 0 5 10 15 20 25 0 10 20 30 40 50 60 70 80 90 100

5.0E-4 5.0E-4 -
0.0010 0.0010-
0.0050 0.0050 -
.01 - 0.01-
).02 0.02-
.03 0.03-
~~
.04 - 0.04-
[+ < 0.05 msec :
e —
).05 - ps 0.05 -
E
-~
).0 - 0.06 -
2
©
.07 S 0.07-
N—
5
).08 - = 0.08 -
=
8
— ? 0.09 -
005 <T:¢< 0.1 msec
0. 0.3-
).5 0.5-
1- Tle
2 2-
4- 4-

T¢> 0.1 msec

|46

(pvreduce + [1 23 4567 89 .. 128])

parallel sum using pvreduce

12345 .. 32])

(33 33 34 35 .. 64])
(65 66 67 68 .. 96])
(97 98 99 100 .. 128]))

reduce
reduce

(reduce + (
(
(reduce
(

+ + + +

reduce

149

(pvreduce + [1 23 4567 89 .. 128])

(reduce + [1 2345 .. 32])
(reduce + [33 33 34 35 .. 64])
(reduce + [65 66 67 68 .. 96])
(reduce + [97 98 99 100 .. 128]))

| (reduce +
—

I::> (reduce + [528 1552 2576 3600])

(pvreduce + [1 23 4567 89 .. 128])

(reduce + [1 2345 .. 32])
(reduce + [33 33 34 35 .. 64])
(reduce + [65 66 67 68 .. 96])
(reduce + [97 98 99 100 .. 128]))

| (reduce +
—

| (reduce + [528 1552 2576 3600])
_/

I::> 8256

parallel filter using pvreduce

(defn pvfilter [pred v]
(letfn [(filt [v x] (if (pred x) (conj v x) v))I
(pvreduce filt [] v)

(pvfilter even? [1 2 3456 7 89 .. 128])

152

parallel filter

(reduce filt

(reduce
(reduce
(reduce
(reduce

filt
filt
filt
filt

153

(1234 .. 32])
(33 34 35 36 ..
(65 66 67 68 ..

(97 98 99 100 ..

using pvreduce

64])
96])
1281))

(defn pvfilter [pred v]

(letfn [(filt [v Xx]

(if (pred x) (conj v x) v))]
(pvreduce filt [] v)

(pvfilter even? [1 2 3456 7 89 .. 128])

reduce

- (reduce filt (

~ (reduce
(
(

reduce
reduce

::> (reduce filt [[2 4 6
34 36

66 68

filt
filt
filt
filt

8 .. 32]
38 40 ..

70 72 ..
98 100 102 104 ..

1234 .. 32])
(33 34 35 36 .. 64])
65 66 67 68 .. 96])

97 98 99 100 .. 128]))

64]
96]
128]11)

(defn pvfilter [pred v]
(Letfn [(filt [v x] (if (pred x) (conj v x) v))I
(pvreduce filt [] v)

(pvfilter even? [1 2 3456 7 89 .. 128])

— (reduce filt (reduce filt [] [1 2 3 4 .. 321])
(reduce filt [] [33 34 35 36 .. 64])
(reduce filt [] [65 66 67 68 .. 96])
(reduce filt [] [97 98 99 100 .. 128]))

_~ (reduce filt [[2 4 6 8 .. 32]
/ 34 36 38 40 .. 64]
66 68 70 72 .. 96]
08 100 102 104 .. 12811)

java. lang.ClassCastException: clojure.lang.PersistentVector cannot
be cast to java.lang.Number

parallel filter using pvreduce

(defn pvfilter [pred v]
(letfn [(par-filt [v x]
(cond
(vector? x) (apply reduce conj v x)
(even? x) (conj v Xx)
relse v))l
(pvreduce par-filt [] v))

(pvfilter even? [1 2 3456 7 89 .. 128])

156

parallel filter using pvreduce

| | (reduce par-filt (reduce par-filt [] [1 2 3 4 .. 32])

1 (reduce par-filt [] [33 34 35 36 .. 64])
(reduce par-filt [] [65 66 67 68 .. 96])
(reduce par-filt [] [97 98 99 100 .. 128]))

157

(defn pvfilter [pred v]
(letfn [(par-filt [v x]
(cond
(vector? x) (apply reduce conj v x)
(even? x) (conj v Xx)
relse v))l
(pvreduce par-filt [] v))

(pvfilter even? [1 2 3456 7 89 .. 128])

| (reduce par-filt (reduce par-filt [] [1 2 3 4 .. 32])

1 (reduce par-filt [] [33 34 35 36 .. 64])
(reduce par-filt [] [65 66 67 68 .. 96])
(reduce par-filt [] [97 98 99 100 .. 128]))

E:> (apply reduce conj [[2 4 6 8 .. 32]
(34 36 38 40 .. 64]
66 68 70 72 .. 96]
98 100 102 104 .. 12811)

(defn pvfilter [pred v]
(letfn [(par-filt [v x]
(cond
(vector? x) (apply reduce conj v Xx)
(even? x) (conj v x)
relse v))l
(pvreduce par-filt [] v))

(pvfilter even? [1 2 3456 7 89 .. 128])

;//// (reduce par-filt (reduce par-filt [] [1 2 3 4 .. 32])
(reduce par-filt [] [33 34 35 36 .. 64])
(reduce par-filt [] [65 66 67 68 .. 96])
(reduce par-filt [] [97 98 99 100 .. 128]))

| (apply reduce conj [[2 4 6 8 .. 32]
__ﬁ//// PpLy]

34 36 38 40 .. 64]
C“> [2 4 6 8 .. 128]

(66 68 70 72 .. 96]

(98 100 102 104 .. 128]])

median per-function time (msecs)

PVﬁ Iter compared to filter with 2 cores

* results are the median of 50 samples, where a test predicate was pvfiltered over a vector of 100 values

performance difference from filter (%) performance difference from filter (msec)
100 90 80 70 60 50 40 30 20 10 0 10 20 30 0 10 20 30 40 50 60 70 80 90 100 110

5.0E-4 5.0E-4 -
0.0010 0.0010-
0.0050 0.0050 -
.01 - 0.01-
).02 0.02-
.03 0.03-
~~
.04 - 0.04-
[+ < 0.05 msec :
e —
).05 - ps 0.05 -
E
-~
).0 - 0.06 -
2
©
.07 S 0.07-
N—
5
).08 - = 0.08 -
=
8
— ? 0.09 -
005 <T:¢<0.] msec
0. 0.3-
).5 0.5-
1- Tle
2 2-
4- 4-

T¢> 0.1 msec

161

references

Brian Goetz Fork/Join talk: http://www.infog.com/presentations/brian-goetz-concurrent-parallel

Fork/Join API: http://gee.cs.oswego.edu/dl/jsr|66/dist/jsr | 66ydocs/

Developer’s Works article: http://www.ibm.com/developerworks/java/library/j-jtp| | | 37.html

Java Concurrency Wiki: http://artisans-serverintellect-com.si-eioswwwé.com/default.asp?W |

JVM summit slides: http://wiki.jvmlangsummit.com/images/f/fO/Lea-fj-jul | 0.pdf

Fork/Join Paper: http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.42.1918&rep=rep | &type=pdf

162

http://www.infoq.com/presentations/brian-goetz-concurrent-parallel
http://www.infoq.com/presentations/brian-goetz-concurrent-parallel
http://gee.cs.oswego.edu/dl/jsr166/dist/jsr166ydocs/
http://gee.cs.oswego.edu/dl/jsr166/dist/jsr166ydocs/
http://www.ibm.com/developerworks/java/library/j-jtp11137.html
http://www.ibm.com/developerworks/java/library/j-jtp11137.html
http://artisans-serverintellect-com.si-eioswww6.com/default.asp?W1
http://artisans-serverintellect-com.si-eioswww6.com/default.asp?W1
http://wiki.jvmlangsummit.com/images/f/f0/Lea-fj-jul10.pdf
http://wiki.jvmlangsummit.com/images/f/f0/Lea-fj-jul10.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.42.1918&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.42.1918&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.42.1918&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.42.1918&rep=rep1&type=pdf

thank you

parallel frequency using pvreduce

(defn pvfreq [x]
(letfn [(par-freq [m x]
(if (map? Xx)
(merge-with #(+ %1 %2) m Xx)
(update-in m [x] #(if % 1 (inc %)))))]
(pvreduce par-freq {} x)

(pvfreq [:foo :bar :baz :bar .. :fool)

165

parallel frequency

(reduce par-freq

(reduce par-freq {}
(reduce par-freq {}
(reduce par-freq {}
(reduce par-freq {}

166

[foo
[:bar
[:baz
[:bar

using pvreduce

:foo ..
: foo ..
:bar ..
:baz ..

:bar]
: 00
: 00
:baz]

' e S S’

(defn pvfreq [x]
(letfn [(par-freq [m Xx]
(if (map? Xx)
(merge-with #(+ %1 %2)
(update-in m [x] #(if = 1 (inc %)))))]
(pvreduce par-freq {} x)

m x)

(pvfreq [:foo :bar :baz :bar .. :fool)

reduce par-freq {}

(reduce par-freq (
(reduce par-freq {}
(
(

reduce par-freq {}
reduce par-freq {}

E:{::> (reduce par-freq [{:foo 15, :bar 10,
{:foo 10, :bar 12,

{:foo 7, :bar 14,
{:foo 12, :bar 10,

[foo
[:bar
[:baz
[:bar

-baz 7}
‘baz 5}
-baz 11}

:foo ..
: foo ..
:bar ..
:baz ..

:baz 10}1)

:bar]
: f00]
+ T00]

:baz]

' e S S’

(defn pvfreq [x]
(letfn [(par-freq [m x]
(if (map? x)
(merge-with #(+ %1 %2)
(update-in m [x] #(if %= 1 (inc %)))))]
(pvreduce par-freq {} x)

m x)

(pvfreq [:foo :bar :baz :bar .. :fool)

;//// (reduce par-freq (reduce par-freq {}

(reduce par-freq {}
(reduce par-freq {}
(

reduce par-freq {}

— (reduce par-freq [{:foo 15, :bar 10,
{:foo 10, :bar 12,

{:foo 7, :bar 14,
{:foo 12, :bar 10,

1::> {:foo 44, :bar 46, :baz 33}

[foo
[:bar
[:baz
[:bar

:baz 7}
:haz 5}
‘bhaz 11}

:foo ..
: foo ..
:bar ..
:baz ..

:bhaz 10}1])

:bar]
 f00]
: f00]

:baz.

' e S S

