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summary

Concurrency is commonly mistaken for parallelism, but the two are distinct 
concepts. Concurrency is concerned with managing access to shared state from 
different threads, whereas parallelism is concerned with utilizing multiple 
processors/cores to improve the performance of a computation.

Clojure has successfully improved the state of concurrent programming with its 
many concurrency primitives, and now the goal is to do the same for multi-core 
parallel programming, by introducing new parallel processing features that work 
with Clojure’s existing data structures. 

Clojure’s original parallel processing function, pmap, will soon be joined by pvmap 
and pvreduce, based on JSR 166 and Doug Lea’s Fork/Join Framework. From these 
building blocks, and the fjvtree function that underlies pvmap and pvreduce, higher-
level parallel functions can be developed.

This talk will provide an illustrated walkthrough of the algorithms underlying pmap, 
pvmap, and pvreduce, comparing their strengths, weaknesses, and performance 
characteristics; and will conclude with an example of using these primitives to write 
a parallel version of Clojure’s filter function.
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current threads completed work

pmap processors: 2   threads: 4

The pmap function is semi-lazy, meaning it tries to keep 
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utilized, but doesn’t process its entire input. It does this by 
using futures to invoke the function being mapped on just 
enough input values, but no more.
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consuming its output can do so at a faster rate than the 
process producing its output, otherwise all the processors 
won’t be utilized. 
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rate than the others, there is no way to redistribute the 
load. The more responsive processors will complete their 
work and sit idle until the slowest completes and its result 
can be consumed.
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compared to map (2 cores)pmap

Tf < 0.05 msec

0.05 < Tf < 0.1 msec

Tf > 0.1 msec

* results are the median of 50 samples, where a test function was pmapped over a vector of 100 values
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with the producing 
process, hence 
underutilizing the 
processors, is to 
partition the input data 
into chunks and pass 
those to pmap instead 
of individual values.
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compared to map (2 cores)chunked pmap

chunk < 10

10 < chunk < 50

Tf > 50

* results are the median of 500 samples, where a test function (duration < 0.005 msec) was pmapped over chunked vectors of 512 values
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A dequeue (pronounced “deck”) is a double-ended queue, 
where values can be pushed and popped off the front or 
taken from the back. The Fork-Join algorithm systematically 
divides a job into tasks that are pushed onto the dequeue, 
resulting in the largest tasks being located at the back, 
which in turn improves the efficiency of its work-stealing 
algorithm.
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A dequeue (pronounced “deck”) is a double-ended queue, 
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A dequeue (pronounced “deck”) is a double-ended queue, 
where values can be pushed and popped off the front or 
taken from the back. The Fork-Join algorithm systematically 
divides a job into tasks that are pushed onto the dequeue, 
resulting in the largest tasks being located at the back, 
which in turn improves the efficiency of its work-stealing 
algorithm.
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A dequeue (pronounced “deck”) is a double-ended queue, 
where values can be pushed and popped off the front or 
taken from the back. The Fork-Join algorithm systematically 
divides a job into tasks that are pushed onto the dequeue, 
resulting in the largest tasks being located at the back, 
which in turn improves the efficiency of its work-stealing 
algorithm.



fork-join
basic algorithm

75



fork-join

76

worker deques current tasks completed tasks

workers: 4   branching factor: 2   sequential threshold: 256

Fork-Join is a divide-
and-conquer 
algorithm that 
iteratively divides a 
job into smaller and 
smaller tasks, 
placing them on a 
dequeue, until the 
size of the current 
task is below a 
configured 
threshold.
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worker deques current tasks completed tasks

fork-join workers: 4   branching factor: 2   sequential threshold: 256

As one worker is 
processing its tasks, 
another worker can 
steal a task from the 
back of its dequeue.
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worker deques current tasks completed tasks

fork-join workers: 4   branching factor: 2   sequential threshold: 256

Once each worker’s 
current task is 
smaller than the 
configured 
threshold, it will 
begin the intended 
computation.
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worker deques current tasks completed tasks

fork-join workers: 4   branching factor: 2   sequential threshold: 256

Once the 
computation is 
completed for the 
current task, the 
worker will pop 
another task off of its 
dequeue...
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worker deques current tasks completed tasks

fork-join workers: 4   branching factor: 2   sequential threshold: 256

... and perform the 
computation on it.
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worker deques current tasks completed tasks

fork-join workers: 4   branching factor: 2   sequential threshold: 256

After the 
computation has 
been completed for 
at least two tasks, the 
results can be 
combined with a join 
function.
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worker deques current tasks completed tasks
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And so on...
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worker deques current tasks completed tasks
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If one of the workers 
falls behind, another 
worker can take 
tasks from its 
dequeue.
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join

join

101

worker deques current tasks completed tasks

fork-join workers: 4   branching factor: 2   sequential threshold: 256

And so on...



join

32

join

102

worker deques current tasks completed tasks

fork-join workers: 4   branching factor: 2   sequential threshold: 256

And so on...



join
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worker deques current tasks completed tasks

fork-join workers: 4   branching factor: 2   sequential threshold: 256

And so on...
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worker deques current tasks completed tasks

fork-join workers: 4   branching factor: 2   sequential threshold: 256

... until the job is 
complete.



persistent vector
parallelism with existing data structures
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persistent-vector 0000000000 00000

count: 0
shift: 5

A PersistentVector 
contains a root 
and a tail; the tail 
is an array that 
can contain up to 
32 Object 
references, and 
the root is a Node 
that can contain 
up to 32 child 
Nodes.

nodes

obj refs

selected

tail

root node
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persistent-vector 1111100000 00000

count: 32
shift: 5

Values are added 
to the tail...

nodes

obj refs

selected

tail

root node
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persistent-vector 1111100000 00000

count: 33
shift: 5

... until the tail is 
full, then a new 
Node is created, 
containing the 32 
Object references 
from the tail, and 
inserted as a child 
of the root.

nodes

obj refs

selected

tail

root node
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persistent-vector 1111100000 11111

count: 1025
shift: 5

Once the root is 
full, a new root 
Node is created, 
and the existing 
one is added as a 
child.

nodes

obj refs

selected

tail

root node
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persistent-vector 1111100001 00000

count: 1057
shift: 10

nodes

obj refs

selected

tail

root node

Once the root is 
full, a new root 
Node is created, 
and the existing 
one is added as a 
child.
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persistent-vector 1111100001 11111

count: 2049
shift: 10

And so on...

nodes

obj refs

selected

tail

root node
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persistent-vector 1111100010 00000

count: 2081
shift: 10

And so on...

nodes

obj refs

selected

tail

root node
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persistent-vector 1111100010 11111

count: 3073
shift: 10

And so on...

nodes

obj refs

selected

tail

root node
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persistent-vector 1111100011 00000

count: 3105
shift: 10

And so on...

nodes

obj refs

selected

tail

root node
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persistent-vector 1111100011 11111

count: 4097
shift: 10

And so on...

nodes

obj refs

selected

tail

root node



fork-join on persistent vectors
fjvtree, pvmap, and pvreduce

116



fjvtree

117

worker deques current tasks completed tasks

workers: 4   branching factor: 32   sequential threshold: 32

The core Fork-Join 
algorithm in 
Clojure is 
implemented in 
the fjvtree 
function, which 
uses the 
underlying tree 
structure of 
PersistentVector to 
break jobs into 
tasks.



The core Fork-Join 
algorithm in 
Clojure is 
implemented in 
the fjvtree 
function, which 
uses the 
underlying tree 
structure of 
PersistentVector to 
break jobs into 
tasks.

(fjvtree v combine-fn leaf-fn)

fork-join based 
map and reduce 

on vectors
(pvmap f v)     (pvreduce f v)

implemented with

118

worker deques current tasks completed tasks

fjvtree workers: 4   branching factor: 32   sequential threshold: 32
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worker deques current tasks completed tasks

fjvtree workers: 4   branching factor: 32   sequential threshold: 32

The core Fork-Join 
algorithm in 
Clojure is 
implemented in 
the fjvtree 
function, which 
uses the 
underlying tree 
structure of 
PersistentVector to 
break jobs into 
tasks.



push

pushpush

120

worker deques current tasks completed tasks

fjvtree workers: 4   branching factor: 32   sequential threshold: 32

The core Fork-Join 
algorithm in 
Clojure is 
implemented in 
the fjvtree 
function, which 
uses the 
underlying tree 
structure of 
PersistentVector to 
break jobs into 
tasks.



1024

10241024

push push push

push push push push

push push push push

push push push push

push push push push

push push push push

push push push push

push push push push
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worker deques current tasks completed tasks

fjvtree workers: 4   branching factor: 32   sequential threshold: 32

The core Fork-Join 
algorithm in 
Clojure is 
implemented in 
the fjvtree 
function, which 
uses the 
underlying tree 
structure of 
PersistentVector to 
break jobs into 
tasks.



32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

1024

10241024
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worker deques current tasks completed tasks

comp

fjvtree workers: 4   branching factor: 32   sequential threshold: 32

The core Fork-Join 
algorithm in 
Clojure is 
implemented in 
the fjvtree 
function, which 
uses the 
underlying tree 
structure of 
PersistentVector to 
break jobs into 
tasks.



The core Fork-Join 
algorithm in 
Clojure is 
implemented in 
the fjvtree 
function, which 
uses the 
underlying tree 
structure of 
PersistentVector to 
break jobs into 
tasks.

32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

1024

10241024

comp

(fn [^PersistentVector$Node node] 
  (new-node 
    (amap (.array node) 
          i a
          (f (aget a i)))))

leaf-fn: pvmap

123

worker deques current tasks completed tasks

fjvtree workers: 4   branching factor: 32   sequential threshold: 32



The core Fork-Join 
algorithm in 
Clojure is 
implemented in 
the fjvtree 
function, which 
uses the 
underlying tree 
structure of 
PersistentVector to 
break jobs into 
tasks.

32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

1024

10241024

comp

(fn [^PersistentVector$Node node]
  (let [a (.array node)]
    (loop [ret (aget a 0) 
           i (int 1)]
      (if (< i 32)
        (recur (f ret (aget a i)) 
               (inc i))
        ret))))

leaf-fn: pvreduce

124

worker deques current tasks completed tasks

fjvtree workers: 4   branching factor: 32   sequential threshold: 32



take

taketake

32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

125

worker deques current tasks completed tasks

comp

fjvtree workers: 4   branching factor: 32   sequential threshold: 32

The core Fork-Join 
algorithm in 
Clojure is 
implemented in 
the fjvtree 
function, which 
uses the 
underlying tree 
structure of 
PersistentVector to 
break jobs into 
tasks.



push push push

push push push push

push push push push

push push push push

push push push push

push push push push

push push push push

push push push push

push push push

push push push push

push push push push

push push push push

push push push push

push push push push

push push push push

push push push push

push push push

push push push push

push push push push

push push push push

push push push push

push push push push

push push push push

push push push push

126

worker deques current tasks completed tasks

comp 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

fjvtree workers: 4   branching factor: 32   sequential threshold: 32

The core Fork-Join 
algorithm in 
Clojure is 
implemented in 
the fjvtree 
function, which 
uses the 
underlying tree 
structure of 
PersistentVector to 
break jobs into 
tasks.



comp

comp
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worker deques current tasks completed tasks

comp 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

comp 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

fjvtree workers: 4   branching factor: 32   sequential threshold: 32

The core Fork-Join 
algorithm in 
Clojure is 
implemented in 
the fjvtree 
function, which 
uses the 
underlying tree 
structure of 
PersistentVector to 
break jobs into 
tasks.



pop

poppop

pop
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worker deques current tasks completed tasks

32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

fjvtree workers: 4   branching factor: 32   sequential threshold: 32

The core Fork-Join 
algorithm in 
Clojure is 
implemented in 
the fjvtree 
function, which 
uses the 
underlying tree 
structure of 
PersistentVector to 
break jobs into 
tasks.



comp

compcomp

comp
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worker deques current tasks completed tasks

32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

fjvtree workers: 4   branching factor: 32   sequential threshold: 32

The core Fork-Join 
algorithm in 
Clojure is 
implemented in 
the fjvtree 
function, which 
uses the 
underlying tree 
structure of 
PersistentVector to 
break jobs into 
tasks.



pop

poppop

pop
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worker deques current tasks completed tasks

32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

fjvtree workers: 4   branching factor: 32   sequential threshold: 32

The core Fork-Join 
algorithm in 
Clojure is 
implemented in 
the fjvtree 
function, which 
uses the 
underlying tree 
structure of 
PersistentVector to 
break jobs into 
tasks.



comp

compcomp

comp
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worker deques current tasks completed tasks

32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

fjvtree workers: 4   branching factor: 32   sequential threshold: 32

The core Fork-Join 
algorithm in 
Clojure is 
implemented in 
the fjvtree 
function, which 
uses the 
underlying tree 
structure of 
PersistentVector to 
break jobs into 
tasks.



pop

poppop

pop
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worker deques current tasks completed tasks

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

fjvtree workers: 4   branching factor: 32   sequential threshold: 32

The core Fork-Join 
algorithm in 
Clojure is 
implemented in 
the fjvtree 
function, which 
uses the 
underlying tree 
structure of 
PersistentVector to 
break jobs into 
tasks.



comp

compcomp

comp

133

worker deques current tasks completed tasks

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

fjvtree workers: 4   branching factor: 32   sequential threshold: 32

The core Fork-Join 
algorithm in 
Clojure is 
implemented in 
the fjvtree 
function, which 
uses the 
underlying tree 
structure of 
PersistentVector to 
break jobs into 
tasks.



1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 pop

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 pop

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 pop

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 pop
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worker deques current tasks completed tasks

fjvtree workers: 4   branching factor: 32   sequential threshold: 32

The core Fork-Join 
algorithm in 
Clojure is 
implemented in 
the fjvtree 
function, which 
uses the 
underlying tree 
structure of 
PersistentVector to 
break jobs into 
tasks.



1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 comp

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 comp

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 comp

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 comp
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worker deques current tasks completed tasks

fjvtree workers: 4   branching factor: 32   sequential threshold: 32

The core Fork-Join 
algorithm in 
Clojure is 
implemented in 
the fjvtree 
function, which 
uses the 
underlying tree 
structure of 
PersistentVector to 
break jobs into 
tasks.



join

joinjoin

join
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worker deques current tasks completed tasks

fjvtree workers: 4   branching factor: 32   sequential threshold: 32

The core Fork-Join 
algorithm in 
Clojure is 
implemented in 
the fjvtree 
function, which 
uses the 
underlying tree 
structure of 
PersistentVector to 
break jobs into 
tasks.



The core Fork-Join 
algorithm in 
Clojure is 
implemented in 
the fjvtree 
function, which 
uses the 
underlying tree 
structure of 
PersistentVector to 
break jobs into 
tasks.

fjvtree workers: 4   branching factor: 32   sequential threshold: 32

join

joinjoin

join

(fn [coll] 
  (new-node (to-array coll)))) 

combine-fn: pvmap

join

137

worker deques current tasks completed tasks



The core Fork-Join 
algorithm in 
Clojure is 
implemented in 
the fjvtree 
function, which 
uses the 
underlying tree 
structure of 
PersistentVector to 
break jobs into 
tasks.

fjvtree workers: 4   branching factor: 32   sequential threshold: 32

join

joinjoin

join

(fn [coll] 
  (reduce f coll)) 

combine-fn: pvreduce

join

138

worker deques current tasks completed tasks



join

joinjoin

join
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worker deques current tasks completed tasks

fjvtree workers: 4   branching factor: 32   sequential threshold: 32

The core Fork-Join 
algorithm in 
Clojure is 
implemented in 
the fjvtree 
function, which 
uses the 
underlying tree 
structure of 
PersistentVector to 
break jobs into 
tasks.



join
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worker deques current tasks completed tasks

fjvtree workers: 4   branching factor: 32   sequential threshold: 32

The core Fork-Join 
algorithm in 
Clojure is 
implemented in 
the fjvtree 
function, which 
uses the 
underlying tree 
structure of 
PersistentVector to 
break jobs into 
tasks.



worker deques current tasks completed tasks
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141

fjvtree workers: 4   branching factor: 32   sequential threshold: 32

The core Fork-Join 
algorithm in 
Clojure is 
implemented in 
the fjvtree 
function, which 
uses the 
underlying tree 
structure of 
PersistentVector to 
break jobs into 
tasks.



pvmap
performance characteristics

142
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compared to map (2 cores)pvmap

Tf < 0.05 msec

0.05 < Tf < 0.1 msec

Tf > 0.1 msec

* results are the median of 50 samples, where a test function was pvmapped over a vector of 100 values
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compared to map (2 cores)pvmap vs pmap

Tf < 0.05 msec

0.05 < Tf < 0.1 msec

Tf > 0.1 msec

* results are the median of 50 samples, where a test function was p*mapped over a vector of 100 values



pvreduce
performance characteristics
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compared to reduce (2 cores)pvreduce

Tf < 0.05 msec

0.05 < Tf < 0.1 msec

Tf > 0.1 msec

* results are the median of 50 samples, where a test function was pvreduced over a vector of 100 values



pvreduce examples
implementing pvfilter

147



148

using pvreduceparallel sum

(pvreduce + [1 2 3 4 5 6 7 8 9 .. 128])



(pvreduce + [1 2 3 4 5 6 7 8 9 .. 128])

(reduce + (reduce + [1 2 3 4 5 .. 32])
          (reduce + [33 33 34 35 .. 64])
          (reduce + [65 66 67 68 .. 96])
          (reduce + [97 98 99 100 .. 128]))
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using pvreduceparallel sum



(pvreduce + [1 2 3 4 5 6 7 8 9 .. 128])

(reduce + (reduce + [1 2 3 4 5 .. 32])
          (reduce + [33 33 34 35 .. 64])
          (reduce + [65 66 67 68 .. 96])
          (reduce + [97 98 99 100 .. 128]))

(reduce + [528 1552 2576 3600])
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using pvreduceparallel sum



(pvreduce + [1 2 3 4 5 6 7 8 9 .. 128])

(reduce + (reduce + [1 2 3 4 5 .. 32])
          (reduce + [33 33 34 35 .. 64])
          (reduce + [65 66 67 68 .. 96])
          (reduce + [97 98 99 100 .. 128]))

(reduce + [528 1552 2576 3600])
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8256

using pvreduceparallel sum



(pvfilter even? [1 2 3 4 5 6 7 8 9 .. 128])

(defn pvfilter [pred v]
  (letfn [(filt [v x] (if (pred x) (conj v x) v))]
    (pvreduce filt [] v)

152

using pvreduceparallel filter



(pvfilter even? [1 2 3 4 5 6 7 8 9 .. 128])

(defn pvfilter [pred v]
  (letfn [(filt [v x] (if (pred x) (conj v x) v))]
    (pvreduce filt [] v)

(reduce filt (reduce filt [] [1 2 3 4 .. 32])
             (reduce filt [] [33 34 35 36 .. 64])
             (reduce filt [] [65 66 67 68 .. 96])
             (reduce filt [] [97 98 99 100 .. 128]))
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using pvreduceparallel filter



(reduce filt (reduce filt [] [1 2 3 4 .. 32])
             (reduce filt [] [33 34 35 36 .. 64])
             (reduce filt [] [65 66 67 68 .. 96])
             (reduce filt [] [97 98 99 100 .. 128]))

(pvfilter even? [1 2 3 4 5 6 7 8 9 .. 128])

(defn pvfilter [pred v]
  (letfn [(filt [v x] (if (pred x) (conj v x) v))]
    (pvreduce filt [] v)
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(reduce filt [[2 4 6 8 .. 32] 
              [34 36 38 40 .. 64]
              [66 68 70 72 .. 96]
              [98 100 102 104 .. 128]])

using pvreduceparallel filter



(reduce filt (reduce filt [] [1 2 3 4 .. 32])
             (reduce filt [] [33 34 35 36 .. 64])
             (reduce filt [] [65 66 67 68 .. 96])
             (reduce filt [] [97 98 99 100 .. 128]))

(pvfilter even? [1 2 3 4 5 6 7 8 9 .. 128])

(defn pvfilter [pred v]
  (letfn [(filt [v x] (if (pred x) (conj v x) v))]
    (pvreduce filt [] v)

(reduce filt [[2 4 6 8 .. 32] 
              [34 36 38 40 .. 64]
              [66 68 70 72 .. 96]
              [98 100 102 104 .. 128]])

155

java.lang.ClassCastException: clojure.lang.PersistentVector cannot 
be cast to java.lang.Number

using pvreduceparallel filter
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(pvfilter even? [1 2 3 4 5 6 7 8 9 .. 128])

(defn pvfilter [pred v]
  (letfn [(par-filt [v x]
            (cond 
              (vector? x) (apply reduce conj v x)
              (even? x) (conj v x)
              :else v))]
    (pvreduce par-filt [] v)) 

using pvreduceparallel filter



(pvfilter even? [1 2 3 4 5 6 7 8 9 .. 128])

(defn pvfilter [pred v]
  (letfn [(par-filt [v x]
            (cond 
              (vector? x) (apply reduce conj v x)
              (even? x) (conj v x)
              :else v))]
    (pvreduce par-filt [] v)) 

(reduce par-filt (reduce par-filt [] [1 2 3 4 .. 32])
                 (reduce par-filt [] [33 34 35 36 .. 64])
                 (reduce par-filt [] [65 66 67 68 .. 96])
                 (reduce par-filt [] [97 98 99 100 .. 128]))
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using pvreduceparallel filter



(reduce par-filt (reduce par-filt [] [1 2 3 4 .. 32])
                 (reduce par-filt [] [33 34 35 36 .. 64])
                 (reduce par-filt [] [65 66 67 68 .. 96])
                 (reduce par-filt [] [97 98 99 100 .. 128]))

(pvfilter even? [1 2 3 4 5 6 7 8 9 .. 128])

(defn pvfilter [pred v]
  (letfn [(par-filt [v x]
            (cond 
              (vector? x) (apply reduce conj v x)
              (even? x) (conj v x)
              :else v))]
    (pvreduce par-filt [] v)) 

(apply reduce conj [[2 4 6 8 .. 32] 
                    [34 36 38 40 .. 64]
                    [66 68 70 72 .. 96]
                    [98 100 102 104 .. 128]])
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using pvreduceparallel filter



(reduce par-filt (reduce par-filt [] [1 2 3 4 .. 32])
                 (reduce par-filt [] [33 34 35 36 .. 64])
                 (reduce par-filt [] [65 66 67 68 .. 96])
                 (reduce par-filt [] [97 98 99 100 .. 128]))

(apply reduce conj [[2 4 6 8 .. 32] 
                    [34 36 38 40 .. 64]
                    [66 68 70 72 .. 96]
                    [98 100 102 104 .. 128]])

(pvfilter even? [1 2 3 4 5 6 7 8 9 .. 128])

(defn pvfilter [pred v]
  (letfn [(par-filt [v x]
            (cond 
              (vector? x) (apply reduce conj v x)
              (even? x) (conj v x)
              :else v))]
    (pvreduce par-filt [] v)) 
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[2 4 6 8 .. 128]

using pvreduceparallel filter



pvfilter
performance characteristics
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compared to filter with 2 corespvfilter

Tf < 0.05 msec

0.05 < Tf < 0.1 msec

Tf > 0.1 msec

* results are the median of 50 samples, where a test predicate was pvfiltered over a vector of 100 values
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(pvfreq [:foo :bar :baz :bar .. :foo])

(defn pvfreq [x] 
  (letfn [(par-freq [m x]
            (if (map? x) 
              (merge-with #(+ %1 %2) m x)
              (update-in m [x] #(if % 1 (inc %)))))]
    (pvreduce par-freq {} x)

using pvreduceparallel frequency



(pvfreq [:foo :bar :baz :bar .. :foo])

(defn pvfreq [x] 
  (letfn [(par-freq [m x]
            (if (map? x) 
              (merge-with #(+ %1 %2) m x)
              (update-in m [x] #(if % 1 (inc %)))))]
    (pvreduce par-freq {} x)
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(reduce par-freq (reduce par-freq {} [:foo :foo .. :bar])
                 (reduce par-freq {} [:bar :foo .. :foo])
                 (reduce par-freq {} [:baz :bar .. :foo])
                 (reduce par-freq {} [:bar :baz .. :baz]))

using pvreduceparallel frequency



(reduce par-freq (reduce par-freq {} [:foo :foo .. :bar])
                 (reduce par-freq {} [:bar :foo .. :foo])
                 (reduce par-freq {} [:baz :bar .. :foo])
                 (reduce par-freq {} [:bar :baz .. :baz]))

(pvfreq [:foo :bar :baz :bar .. :foo])

(defn pvfreq [x] 
  (letfn [(par-freq [m x]
            (if (map? x) 
              (merge-with #(+ %1 %2) m x)
              (update-in m [x] #(if % 1 (inc %)))))]
    (pvreduce par-freq {} x)

167

(reduce par-freq [{:foo 15, :bar 10, :baz 7}
                  {:foo 10, :bar 12, :baz 5}
                  {:foo 7, :bar 14, :baz 11}
                  {:foo 12, :bar 10, :baz 10}])

using pvreduceparallel frequency



(reduce par-freq (reduce par-freq {} [:foo :foo .. :bar])
                 (reduce par-freq {} [:bar :foo .. :foo])
                 (reduce par-freq {} [:baz :bar .. :foo])
                 (reduce par-freq {} [:bar :baz .. :baz]))

(pvfreq [:foo :bar :baz :bar .. :foo])

(defn pvfreq [x] 
  (letfn [(par-freq [m x]
            (if (map? x) 
              (merge-with #(+ %1 %2) m x)
              (update-in m [x] #(if % 1 (inc %)))))]
    (pvreduce par-freq {} x)

(reduce par-freq [{:foo 15, :bar 10, :baz 7}
                  {:foo 10, :bar 12, :baz 5}
                  {:foo 7, :bar 14, :baz 11}
                  {:foo 12, :bar 10, :baz 10}])
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{:foo 44, :bar 46, :baz 33}

using pvreduceparallel frequency


