
From Concurrency to Parallelism

David Edgar Liebke

clojureconj
Durham, NC

23 October 2010

an illustrated guide to multi-core parallelism in Clojure

2

summary

Concurrency is commonly mistaken for parallelism, but the two are distinct
concepts. Concurrency is concerned with managing access to shared state from
different threads, whereas parallelism is concerned with utilizing multiple
processors/cores to improve the performance of a computation.

Clojure has successfully improved the state of concurrent programming with its
many concurrency primitives, and now the goal is to do the same for multi-core
parallel programming, by introducing new parallel processing features that work
with Clojure’s existing data structures.

Clojure’s original parallel processing function, pmap, will soon be joined by pvmap
and pvreduce, based on JSR 166 and Doug Lea’s Fork/Join Framework. From these
building blocks, and the fjvtree function that underlies pvmap and pvreduce, higher-
level parallel functions can be developed.

This talk will provide an illustrated walkthrough of the algorithms underlying pmap,
pvmap, and pvreduce, comparing their strengths, weaknesses, and performance
characteristics; and will conclude with an example of using these primitives to write
a parallel version of Clojure’s filter function.

3

pmap
 algorithm
 weaknesses
 performance characteristics
 chunking
 chunked performance characteristics

fork-join
 dequeues
 basic algorithm

persistent-vector
 overview

fjvtree, pvmap, and pvreduce
 algorithm
 performance characteristics

pvfilter
 implementation
 performance characteristics

outline

pmap
lazy meets parallel

4

pmap

5

processors: 2 threads: 4

current threads completed work

pmap

6

processors: 2 threads: 4

current threads completed work

7

current threads completed work

pmap processors: 2 threads: 4

The pmap function is semi-lazy, meaning it tries to keep
just enough threads running so that all the processors are
utilized, but doesn’t process its entire input. It does this by
using futures to invoke the function being mapped on just
enough input values, but no more.

8

current threads completed work

pmap processors: 2 threads: 4

comp comp comp comp

The pmap function is semi-lazy, meaning it tries to keep
just enough threads running so that all the processors are
utilized, but doesn’t process its entire input. It does this by
using futures to invoke the function being mapped on just
enough input values, but no more.

9

current threads completed work

pmap processors: 2 threads: 4

comp comp comp

The pmap function is semi-lazy, meaning it tries to keep
just enough threads running so that all the processors are
utilized, but doesn’t process its entire input. It does this by
using futures to invoke the function being mapped on just
enough input values, but no more.

10

current threads completed work

pmap processors: 2 threads: 4

compcomp

The pmap function is semi-lazy, meaning it tries to keep
just enough threads running so that all the processors are
utilized, but doesn’t process its entire input. It does this by
using futures to invoke the function being mapped on just
enough input values, but no more.

11

current threads completed work

pmap processors: 2 threads: 4

comp comp

The pmap function is semi-lazy, meaning it tries to keep
just enough threads running so that all the processors are
utilized, but doesn’t process its entire input. It does this by
using futures to invoke the function being mapped on just
enough input values, but no more.

12

current threads completed work

pmap processors: 2 threads: 4

comp compcomp

The pmap function is semi-lazy, meaning it tries to keep
just enough threads running so that all the processors are
utilized, but doesn’t process its entire input. It does this by
using futures to invoke the function being mapped on just
enough input values, but no more.

13

current threads completed work

pmap processors: 2 threads: 4

comp compcomp

The pmap function is semi-lazy, meaning it tries to keep
just enough threads running so that all the processors are
utilized, but doesn’t process its entire input. It does this by
using futures to invoke the function being mapped on just
enough input values, but no more.

14

current threads completed work

pmap processors: 2 threads: 4

comp

comp compcomp

The pmap function is semi-lazy, meaning it tries to keep
just enough threads running so that all the processors are
utilized, but doesn’t process its entire input. It does this by
using futures to invoke the function being mapped on just
enough input values, but no more.

15

current threads completed work

pmap processors: 2 threads: 4

comp

comp comp

The pmap function is semi-lazy, meaning it tries to keep
just enough threads running so that all the processors are
utilized, but doesn’t process its entire input. It does this by
using futures to invoke the function being mapped on just
enough input values, but no more.

16

current threads completed work

pmap processors: 2 threads: 4

comp

comp

comp

The pmap function is semi-lazy, meaning it tries to keep
just enough threads running so that all the processors are
utilized, but doesn’t process its entire input. It does this by
using futures to invoke the function being mapped on just
enough input values, but no more.

17

current threads completed work

pmap processors: 2 threads: 4

comp compcomp

comp

The pmap function is semi-lazy, meaning it tries to keep
just enough threads running so that all the processors are
utilized, but doesn’t process its entire input. It does this by
using futures to invoke the function being mapped on just
enough input values, but no more.

18

current threads completed work

pmap processors: 2 threads: 4

comp compcomp

The pmap function is semi-lazy, meaning it tries to keep
just enough threads running so that all the processors are
utilized, but doesn’t process its entire input. It does this by
using futures to invoke the function being mapped on just
enough input values, but no more.

pmap
when lazy isn’t parallel

19

20

current threads completed work

pmap processors: 2 threads: 4

comp compcomp comp

Because pmap is semi-lazy, it is necessary that the process
consuming its output can do so at a faster rate than the
process producing its output, otherwise all the processors
won’t be utilized.

21

current threads completed work

pmap processors: 2 threads: 4

Because pmap is semi-lazy, it is necessary that the process
consuming its output can do so at a faster rate than the
process producing its output, otherwise all the processors
won’t be utilized.

22

current threads completed work

pmap processors: 2 threads: 4

comp

Because pmap is semi-lazy, it is necessary that the process
consuming its output can do so at a faster rate than the
process producing its output, otherwise all the processors
won’t be utilized.

23

current threads completed work

pmap processors: 2 threads: 4

comp

Because pmap is semi-lazy, it is necessary that the process
consuming its output can do so at a faster rate than the
process producing its output, otherwise all the processors
won’t be utilized.

24

current threads completed work

pmap processors: 2 threads: 4

comp

Because pmap is semi-lazy, it is necessary that the process
consuming its output can do so at a faster rate than the
process producing its output, otherwise all the processors
won’t be utilized.

25

current threads completed work

pmap processors: 2 threads: 4

comp

Because pmap is semi-lazy, it is necessary that the process
consuming its output can do so at a faster rate than the
process producing its output, otherwise all the processors
won’t be utilized.

26

current threads completed work

pmap processors: 2 threads: 4

comp

Because pmap is semi-lazy, it is necessary that the process
consuming its output can do so at a faster rate than the
process producing its output, otherwise all the processors
won’t be utilized.

27

current threads completed work

pmap processors: 2 threads: 4

comp

Because pmap is semi-lazy, it is necessary that the process
consuming its output can do so at a faster rate than the
process producing its output, otherwise all the processors
won’t be utilized.

28

current threads completed work

pmap processors: 2 threads: 4

comp

Because pmap is semi-lazy, it is necessary that the process
consuming its output can do so at a faster rate than the
process producing its output, otherwise all the processors
won’t be utilized.

29

current threads completed work

pmap processors: 2 threads: 4

comp

Because pmap is semi-lazy, it is necessary that the process
consuming its output can do so at a faster rate than the
process producing its output, otherwise all the processors
won’t be utilized.

pmap
uneven loads

30

31

processors: 2 threads: 4

current threads completed work

pmap

comp

If one or more processors are returning results at a slower
rate than the others, there is no way to redistribute the
load. The more responsive processors will complete their
work and sit idle until the slowest completes and its result
can be consumed.

32

current threads completed work

processors: 2 threads: 4pmap

comp comp

If one or more processors are returning results at a slower
rate than the others, there is no way to redistribute the
load. The more responsive processors will complete their
work and sit idle until the slowest completes and its result
can be consumed.

33

current threads completed work

processors: 2 threads: 4pmap

comp compcomp

If one or more processors are returning results at a slower
rate than the others, there is no way to redistribute the
load. The more responsive processors will complete their
work and sit idle until the slowest completes and its result
can be consumed.

34

current threads completed work

processors: 2 threads: 4pmap

comp compcomp

If one or more processors are returning results at a slower
rate than the others, there is no way to redistribute the
load. The more responsive processors will complete their
work and sit idle until the slowest completes and its result
can be consumed.

35

current threads completed work

processors: 2 threads: 4pmap

comp comp

If one or more processors are returning results at a slower
rate than the others, there is no way to redistribute the
load. The more responsive processors will complete their
work and sit idle until the slowest completes and its result
can be consumed.

36

current threads completed work

processors: 2 threads: 4pmap

comp

If one or more processors are returning results at a slower
rate than the others, there is no way to redistribute the
load. The more responsive processors will complete their
work and sit idle until the slowest completes and its result
can be consumed.

37

current threads completed work

processors: 2 threads: 4pmap

If one or more processors are returning results at a slower
rate than the others, there is no way to redistribute the
load. The more responsive processors will complete their
work and sit idle until the slowest completes and its result
can be consumed.

38

current threads completed work

processors: 2 threads: 4pmap

comp

If one or more processors are returning results at a slower
rate than the others, there is no way to redistribute the
load. The more responsive processors will complete their
work and sit idle until the slowest completes and its result
can be consumed.

39

current threads completed work

processors: 2 threads: 4pmap

comp

comp

If one or more processors are returning results at a slower
rate than the others, there is no way to redistribute the
load. The more responsive processors will complete their
work and sit idle until the slowest completes and its result
can be consumed.

40

current threads completed work

processors: 2 threads: 4pmap

comp

compcomp

If one or more processors are returning results at a slower
rate than the others, there is no way to redistribute the
load. The more responsive processors will complete their
work and sit idle until the slowest completes and its result
can be consumed.

41

current threads completed work

processors: 2 threads: 4pmap

comp

compcomp

If one or more processors are returning results at a slower
rate than the others, there is no way to redistribute the
load. The more responsive processors will complete their
work and sit idle until the slowest completes and its result
can be consumed.

42

current threads completed work

processors: 2 threads: 4pmap

comp

comp

If one or more processors are returning results at a slower
rate than the others, there is no way to redistribute the
load. The more responsive processors will complete their
work and sit idle until the slowest completes and its result
can be consumed.

43

current threads completed work

processors: 2 threads: 4pmap

comp

If one or more processors are returning results at a slower
rate than the others, there is no way to redistribute the
load. The more responsive processors will complete their
work and sit idle until the slowest completes and its result
can be consumed.

pmap
performance characteristics

44

45

compared to map (2 cores)pmap

Tf < 0.05 msec

0.05 < Tf < 0.1 msec

Tf > 0.1 msec

* results are the median of 50 samples, where a test function was pmapped over a vector of 100 values

pmap
chunky style

46

47

processors: 2 threads: 4 chunk size: 32

current threads completed work

pmap

48

current threads completed work

processors: 2 threads: 4 chunk size: 32pmap

49

current threads completed work

processors: 2 threads: 4 chunk size: 32pmap

One strategy for
handling situations
where the consuming
process cannot keep up
with the producing
process, hence
underutilizing the
processors, is to
partition the input data
into chunks and pass
those to pmap instead
of individual values.

One strategy for
handling situations
where the consuming
process cannot keep up
with the producing
process, hence
underutilizing the
processors, is to
partition the input data
into chunks and pass
those to pmap instead
of individual values.

50

(pmap (fn [chunk] (map f chunk))
 (partition 32 coll)))

pmap over chunks

current threads completed work

processors: 2 threads: 4 chunk size: 32pmap

51

comp comp comp comp

current threads completed work

processors: 2 threads: 4 chunk size: 32pmap

One strategy for
handling situations
where the consuming
process cannot keep up
with the producing
process, hence
underutilizing the
processors, is to
partition the input data
into chunks and pass
those to pmap instead
of individual values.

52

comp comp comp

current threads completed work

processors: 2 threads: 4 chunk size: 32pmap

One strategy for
handling situations
where the consuming
process cannot keep up
with the producing
process, hence
underutilizing the
processors, is to
partition the input data
into chunks and pass
those to pmap instead
of individual values.

53

comp comp

comp

current threads completed work

processors: 2 threads: 4 chunk size: 32pmap

One strategy for
handling situations
where the consuming
process cannot keep up
with the producing
process, hence
underutilizing the
processors, is to
partition the input data
into chunks and pass
those to pmap instead
of individual values.

54

comp

comp comp

current threads completed work

processors: 2 threads: 4 chunk size: 32pmap

One strategy for
handling situations
where the consuming
process cannot keep up
with the producing
process, hence
underutilizing the
processors, is to
partition the input data
into chunks and pass
those to pmap instead
of individual values.

55

comp comp comp

current threads completed work

processors: 2 threads: 4 chunk size: 32pmap

One strategy for
handling situations
where the consuming
process cannot keep up
with the producing
process, hence
underutilizing the
processors, is to
partition the input data
into chunks and pass
those to pmap instead
of individual values.

56

comp comp comp comp

current threads completed work

processors: 2 threads: 4 chunk size: 32pmap

One strategy for
handling situations
where the consuming
process cannot keep up
with the producing
process, hence
underutilizing the
processors, is to
partition the input data
into chunks and pass
those to pmap instead
of individual values.

57

compared to map (2 cores)chunked pmap

chunk < 10

10 < chunk < 50

Tf > 50

* results are the median of 500 samples, where a test function (duration < 0.005 msec) was pmapped over chunked vectors of 512 values

fork-join parallelism
divide and conquer

58

dequeue
double-ended queue

59

dequeue double-ended queue

60

A dequeue (pronounced “deck”) is a double-ended queue,
where values can be pushed and popped off the front or
taken from the back. The Fork-Join algorithm systematically
divides a job into tasks that are pushed onto the dequeue,
resulting in the largest tasks being located at the back,
which in turn improves the efficiency of its work-stealing
algorithm.

dequeue split

61

A dequeue (pronounced “deck”) is a double-ended queue,
where values can be pushed and popped off the front or
taken from the back. The Fork-Join algorithm systematically
divides a job into tasks that are pushed onto the dequeue,
resulting in the largest tasks being located at the back,
which in turn improves the efficiency of its work-stealing
algorithm.

dequeue push

62

A dequeue (pronounced “deck”) is a double-ended queue,
where values can be pushed and popped off the front or
taken from the back. The Fork-Join algorithm systematically
divides a job into tasks that are pushed onto the dequeue,
resulting in the largest tasks being located at the back,
which in turn improves the efficiency of its work-stealing
algorithm.

dequeue

63

A dequeue (pronounced “deck”) is a double-ended queue,
where values can be pushed and popped off the front or
taken from the back. The Fork-Join algorithm systematically
divides a job into tasks that are pushed onto the dequeue,
resulting in the largest tasks being located at the back,
which in turn improves the efficiency of its work-stealing
algorithm.

dequeue split

64

A dequeue (pronounced “deck”) is a double-ended queue,
where values can be pushed and popped off the front or
taken from the back. The Fork-Join algorithm systematically
divides a job into tasks that are pushed onto the dequeue,
resulting in the largest tasks being located at the back,
which in turn improves the efficiency of its work-stealing
algorithm.

dequeue push

65

A dequeue (pronounced “deck”) is a double-ended queue,
where values can be pushed and popped off the front or
taken from the back. The Fork-Join algorithm systematically
divides a job into tasks that are pushed onto the dequeue,
resulting in the largest tasks being located at the back,
which in turn improves the efficiency of its work-stealing
algorithm.

dequeue

66

A dequeue (pronounced “deck”) is a double-ended queue,
where values can be pushed and popped off the front or
taken from the back. The Fork-Join algorithm systematically
divides a job into tasks that are pushed onto the dequeue,
resulting in the largest tasks being located at the back,
which in turn improves the efficiency of its work-stealing
algorithm.

dequeue split

67

A dequeue (pronounced “deck”) is a double-ended queue,
where values can be pushed and popped off the front or
taken from the back. The Fork-Join algorithm systematically
divides a job into tasks that are pushed onto the dequeue,
resulting in the largest tasks being located at the back,
which in turn improves the efficiency of its work-stealing
algorithm.

dequeue push

68

A dequeue (pronounced “deck”) is a double-ended queue,
where values can be pushed and popped off the front or
taken from the back. The Fork-Join algorithm systematically
divides a job into tasks that are pushed onto the dequeue,
resulting in the largest tasks being located at the back,
which in turn improves the efficiency of its work-stealing
algorithm.

dequeue

69

A dequeue (pronounced “deck”) is a double-ended queue,
where values can be pushed and popped off the front or
taken from the back. The Fork-Join algorithm systematically
divides a job into tasks that are pushed onto the dequeue,
resulting in the largest tasks being located at the back,
which in turn improves the efficiency of its work-stealing
algorithm.

dequeue compute

70

A dequeue (pronounced “deck”) is a double-ended queue,
where values can be pushed and popped off the front or
taken from the back. The Fork-Join algorithm systematically
divides a job into tasks that are pushed onto the dequeue,
resulting in the largest tasks being located at the back,
which in turn improves the efficiency of its work-stealing
algorithm.

dequeue

71

A dequeue (pronounced “deck”) is a double-ended queue,
where values can be pushed and popped off the front or
taken from the back. The Fork-Join algorithm systematically
divides a job into tasks that are pushed onto the dequeue,
resulting in the largest tasks being located at the back,
which in turn improves the efficiency of its work-stealing
algorithm.

dequeue pop

72

A dequeue (pronounced “deck”) is a double-ended queue,
where values can be pushed and popped off the front or
taken from the back. The Fork-Join algorithm systematically
divides a job into tasks that are pushed onto the dequeue,
resulting in the largest tasks being located at the back,
which in turn improves the efficiency of its work-stealing
algorithm.

dequeue work stealing

73

A dequeue (pronounced “deck”) is a double-ended queue,
where values can be pushed and popped off the front or
taken from the back. The Fork-Join algorithm systematically
divides a job into tasks that are pushed onto the dequeue,
resulting in the largest tasks being located at the back,
which in turn improves the efficiency of its work-stealing
algorithm.

dequeue take

74

A dequeue (pronounced “deck”) is a double-ended queue,
where values can be pushed and popped off the front or
taken from the back. The Fork-Join algorithm systematically
divides a job into tasks that are pushed onto the dequeue,
resulting in the largest tasks being located at the back,
which in turn improves the efficiency of its work-stealing
algorithm.

fork-join
basic algorithm

75

fork-join

76

worker deques current tasks completed tasks

workers: 4 branching factor: 2 sequential threshold: 256

Fork-Join is a divide-
and-conquer
algorithm that
iteratively divides a
job into smaller and
smaller tasks,
placing them on a
dequeue, until the
size of the current
task is below a
configured
threshold.

77

worker deques current tasks completed tasks

fork-join workers: 4 branching factor: 2 sequential threshold: 256

Fork-Join is a divide-
and-conquer
algorithm that
iteratively divides a
job into smaller and
smaller tasks,
placing them on a
dequeue, until the
size of the current
task is below a
configured
threshold.

push

78

worker deques current tasks completed tasks

fork-join workers: 4 branching factor: 2 sequential threshold: 256

Fork-Join is a divide-
and-conquer
algorithm that
iteratively divides a
job into smaller and
smaller tasks,
placing them on a
dequeue, until the
size of the current
task is below a
configured
threshold.

push

2048

79

worker deques current tasks completed tasks

fork-join workers: 4 branching factor: 2 sequential threshold: 256

Fork-Join is a divide-
and-conquer
algorithm that
iteratively divides a
job into smaller and
smaller tasks,
placing them on a
dequeue, until the
size of the current
task is below a
configured
threshold.

1024

take

80

worker deques current tasks completed tasks

fork-join workers: 4 branching factor: 2 sequential threshold: 256

As one worker is
processing its tasks,
another worker can
steal a task from the
back of its dequeue.

1024

push1024

81

worker deques current tasks completed tasks

fork-join workers: 4 branching factor: 2 sequential threshold: 256

As one worker is
processing its tasks,
another worker can
steal a task from the
back of its dequeue.

1024

taketake

82

worker deques current tasks completed tasks

fork-join workers: 4 branching factor: 2 sequential threshold: 256

As one worker is
processing its tasks,
another worker can
steal a task from the
back of its dequeue.

push512

push push512

push512

83

worker deques current tasks completed tasks

fork-join workers: 4 branching factor: 2 sequential threshold: 256

As one worker is
processing its tasks,
another worker can
steal a task from the
back of its dequeue.

512

512 512

512

pushpush

push push

84

worker deques current tasks completed tasks

fork-join workers: 4 branching factor: 2 sequential threshold: 256

As one worker is
processing its tasks,
another worker can
steal a task from the
back of its dequeue.

512

512 512

512

256256

256 256

compute

compute

compute

compute

85

worker deques current tasks completed tasks

fork-join workers: 4 branching factor: 2 sequential threshold: 256

Once each worker’s
current task is
smaller than the
configured
threshold, it will
begin the intended
computation.

512

512 512

512

pop

pop

pop

256

compute

86

worker deques current tasks completed tasks

fork-join workers: 4 branching factor: 2 sequential threshold: 256

Once the
computation is
completed for the
current task, the
worker will pop
another task off of its
dequeue...

512

512 512

512

compute

compute

compute

256

compute

87

worker deques current tasks completed tasks

fork-join workers: 4 branching factor: 2 sequential threshold: 256

... and perform the
computation on it.

512

512 512

512

join join

join

256

compute

88

worker deques current tasks completed tasks

fork-join workers: 4 branching factor: 2 sequential threshold: 256

After the
computation has
been completed for
at least two tasks, the
results can be
combined with a join
function.

512

256

compute

push

push

push

89

worker deques current tasks completed tasks

fork-join workers: 4 branching factor: 2 sequential threshold: 256

And so on...

computecompute

512

256

compute

256

compute

256

256

90

worker deques current tasks completed tasks

fork-join workers: 4 branching factor: 2 sequential threshold: 256

And so on...

512

256

compute

pop

compute

256

compute

256

91

worker deques current tasks completed tasks

fork-join workers: 4 branching factor: 2 sequential threshold: 256

And so on...

512

256

compute

compute

compute

256

compute

256

92

worker deques current tasks completed tasks

fork-join workers: 4 branching factor: 2 sequential threshold: 256

And so on...

join

512

256

compute compute

256

compute

256

93

worker deques current tasks completed tasks

fork-join workers: 4 branching factor: 2 sequential threshold: 256

And so on...

512

256

compute compute

256

compute

256

join

94

worker deques current tasks completed tasks

fork-join workers: 4 branching factor: 2 sequential threshold: 256

And so on...

take

pop pop

pop

95

worker deques current tasks completed tasks

fork-join workers: 4 branching factor: 2 sequential threshold: 256

If one of the workers
falls behind, another
worker can take
tasks from its
dequeue.

compute compute

compute

push

96

worker deques current tasks completed tasks

fork-join workers: 4 branching factor: 2 sequential threshold: 256

If one of the workers
falls behind, another
worker can take
tasks from its
dequeue.

join

compute

compute

compute

256

97

worker deques current tasks completed tasks

fork-join workers: 4 branching factor: 2 sequential threshold: 256

If one of the workers
falls behind, another
worker can take
tasks from its
dequeue.

compute

compute

compute

take

98

worker deques current tasks completed tasks

fork-join workers: 4 branching factor: 2 sequential threshold: 256

If one of the workers
falls behind, another
worker can take
tasks from its
dequeue.

compute

join

join

99

worker deques current tasks completed tasks

fork-join workers: 4 branching factor: 2 sequential threshold: 256

If one of the workers
falls behind, another
worker can take
tasks from its
dequeue.

join

joinjoin

100

worker deques current tasks completed tasks

fork-join workers: 4 branching factor: 2 sequential threshold: 256

And so on...

join

join

101

worker deques current tasks completed tasks

fork-join workers: 4 branching factor: 2 sequential threshold: 256

And so on...

join

32

join

102

worker deques current tasks completed tasks

fork-join workers: 4 branching factor: 2 sequential threshold: 256

And so on...

join

103

worker deques current tasks completed tasks

fork-join workers: 4 branching factor: 2 sequential threshold: 256

And so on...

104

worker deques current tasks completed tasks

fork-join workers: 4 branching factor: 2 sequential threshold: 256

... until the job is
complete.

persistent vector
parallelism with existing data structures

105

106

persistent-vector 0000000000 00000

count: 0
shift: 5

A PersistentVector
contains a root
and a tail; the tail
is an array that
can contain up to
32 Object
references, and
the root is a Node
that can contain
up to 32 child
Nodes.

nodes

obj refs

selected

tail

root node

107

persistent-vector 1111100000 00000

count: 32
shift: 5

Values are added
to the tail...

nodes

obj refs

selected

tail

root node

108

persistent-vector 1111100000 00000

count: 33
shift: 5

... until the tail is
full, then a new
Node is created,
containing the 32
Object references
from the tail, and
inserted as a child
of the root.

nodes

obj refs

selected

tail

root node

109

persistent-vector 1111100000 11111

count: 1025
shift: 5

Once the root is
full, a new root
Node is created,
and the existing
one is added as a
child.

nodes

obj refs

selected

tail

root node

110

persistent-vector 1111100001 00000

count: 1057
shift: 10

nodes

obj refs

selected

tail

root node

Once the root is
full, a new root
Node is created,
and the existing
one is added as a
child.

111

persistent-vector 1111100001 11111

count: 2049
shift: 10

And so on...

nodes

obj refs

selected

tail

root node

112

persistent-vector 1111100010 00000

count: 2081
shift: 10

And so on...

nodes

obj refs

selected

tail

root node

113

persistent-vector 1111100010 11111

count: 3073
shift: 10

And so on...

nodes

obj refs

selected

tail

root node

114

persistent-vector 1111100011 00000

count: 3105
shift: 10

And so on...

nodes

obj refs

selected

tail

root node

115

persistent-vector 1111100011 11111

count: 4097
shift: 10

And so on...

nodes

obj refs

selected

tail

root node

fork-join on persistent vectors
fjvtree, pvmap, and pvreduce

116

fjvtree

117

worker deques current tasks completed tasks

workers: 4 branching factor: 32 sequential threshold: 32

The core Fork-Join
algorithm in
Clojure is
implemented in
the fjvtree
function, which
uses the
underlying tree
structure of
PersistentVector to
break jobs into
tasks.

The core Fork-Join
algorithm in
Clojure is
implemented in
the fjvtree
function, which
uses the
underlying tree
structure of
PersistentVector to
break jobs into
tasks.

(fjvtree v combine-fn leaf-fn)

fork-join based
map and reduce

on vectors
(pvmap f v) (pvreduce f v)

implemented with

118

worker deques current tasks completed tasks

fjvtree workers: 4 branching factor: 32 sequential threshold: 32

119

worker deques current tasks completed tasks

fjvtree workers: 4 branching factor: 32 sequential threshold: 32

The core Fork-Join
algorithm in
Clojure is
implemented in
the fjvtree
function, which
uses the
underlying tree
structure of
PersistentVector to
break jobs into
tasks.

push

pushpush

120

worker deques current tasks completed tasks

fjvtree workers: 4 branching factor: 32 sequential threshold: 32

The core Fork-Join
algorithm in
Clojure is
implemented in
the fjvtree
function, which
uses the
underlying tree
structure of
PersistentVector to
break jobs into
tasks.

1024

10241024

push push push

push push push push

push push push push

push push push push

push push push push

push push push push

push push push push

push push push push

121

worker deques current tasks completed tasks

fjvtree workers: 4 branching factor: 32 sequential threshold: 32

The core Fork-Join
algorithm in
Clojure is
implemented in
the fjvtree
function, which
uses the
underlying tree
structure of
PersistentVector to
break jobs into
tasks.

32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

1024

10241024

122

worker deques current tasks completed tasks

comp

fjvtree workers: 4 branching factor: 32 sequential threshold: 32

The core Fork-Join
algorithm in
Clojure is
implemented in
the fjvtree
function, which
uses the
underlying tree
structure of
PersistentVector to
break jobs into
tasks.

The core Fork-Join
algorithm in
Clojure is
implemented in
the fjvtree
function, which
uses the
underlying tree
structure of
PersistentVector to
break jobs into
tasks.

32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

1024

10241024

comp

(fn [^PersistentVector$Node node]
 (new-node
 (amap (.array node)
 i a
 (f (aget a i)))))

leaf-fn: pvmap

123

worker deques current tasks completed tasks

fjvtree workers: 4 branching factor: 32 sequential threshold: 32

The core Fork-Join
algorithm in
Clojure is
implemented in
the fjvtree
function, which
uses the
underlying tree
structure of
PersistentVector to
break jobs into
tasks.

32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

1024

10241024

comp

(fn [^PersistentVector$Node node]
 (let [a (.array node)]
 (loop [ret (aget a 0)
 i (int 1)]
 (if (< i 32)
 (recur (f ret (aget a i))
 (inc i))
 ret))))

leaf-fn: pvreduce

124

worker deques current tasks completed tasks

fjvtree workers: 4 branching factor: 32 sequential threshold: 32

take

taketake

32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

125

worker deques current tasks completed tasks

comp

fjvtree workers: 4 branching factor: 32 sequential threshold: 32

The core Fork-Join
algorithm in
Clojure is
implemented in
the fjvtree
function, which
uses the
underlying tree
structure of
PersistentVector to
break jobs into
tasks.

push push push

push push push push

push push push push

push push push push

push push push push

push push push push

push push push push

push push push push

push push push

push push push push

push push push push

push push push push

push push push push

push push push push

push push push push

push push push push

push push push

push push push push

push push push push

push push push push

push push push push

push push push push

push push push push

push push push push

126

worker deques current tasks completed tasks

comp 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

fjvtree workers: 4 branching factor: 32 sequential threshold: 32

The core Fork-Join
algorithm in
Clojure is
implemented in
the fjvtree
function, which
uses the
underlying tree
structure of
PersistentVector to
break jobs into
tasks.

comp

comp

127

worker deques current tasks completed tasks

comp 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

comp 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

fjvtree workers: 4 branching factor: 32 sequential threshold: 32

The core Fork-Join
algorithm in
Clojure is
implemented in
the fjvtree
function, which
uses the
underlying tree
structure of
PersistentVector to
break jobs into
tasks.

pop

poppop

pop

128

worker deques current tasks completed tasks

32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

fjvtree workers: 4 branching factor: 32 sequential threshold: 32

The core Fork-Join
algorithm in
Clojure is
implemented in
the fjvtree
function, which
uses the
underlying tree
structure of
PersistentVector to
break jobs into
tasks.

comp

compcomp

comp

129

worker deques current tasks completed tasks

32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

fjvtree workers: 4 branching factor: 32 sequential threshold: 32

The core Fork-Join
algorithm in
Clojure is
implemented in
the fjvtree
function, which
uses the
underlying tree
structure of
PersistentVector to
break jobs into
tasks.

pop

poppop

pop

130

worker deques current tasks completed tasks

32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

fjvtree workers: 4 branching factor: 32 sequential threshold: 32

The core Fork-Join
algorithm in
Clojure is
implemented in
the fjvtree
function, which
uses the
underlying tree
structure of
PersistentVector to
break jobs into
tasks.

comp

compcomp

comp

131

worker deques current tasks completed tasks

32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

fjvtree workers: 4 branching factor: 32 sequential threshold: 32

The core Fork-Join
algorithm in
Clojure is
implemented in
the fjvtree
function, which
uses the
underlying tree
structure of
PersistentVector to
break jobs into
tasks.

pop

poppop

pop

132

worker deques current tasks completed tasks

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

fjvtree workers: 4 branching factor: 32 sequential threshold: 32

The core Fork-Join
algorithm in
Clojure is
implemented in
the fjvtree
function, which
uses the
underlying tree
structure of
PersistentVector to
break jobs into
tasks.

comp

compcomp

comp

133

worker deques current tasks completed tasks

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

fjvtree workers: 4 branching factor: 32 sequential threshold: 32

The core Fork-Join
algorithm in
Clojure is
implemented in
the fjvtree
function, which
uses the
underlying tree
structure of
PersistentVector to
break jobs into
tasks.

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 pop

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 pop

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 pop

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 pop

134

worker deques current tasks completed tasks

fjvtree workers: 4 branching factor: 32 sequential threshold: 32

The core Fork-Join
algorithm in
Clojure is
implemented in
the fjvtree
function, which
uses the
underlying tree
structure of
PersistentVector to
break jobs into
tasks.

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 comp

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 comp

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 comp

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 comp

135

worker deques current tasks completed tasks

fjvtree workers: 4 branching factor: 32 sequential threshold: 32

The core Fork-Join
algorithm in
Clojure is
implemented in
the fjvtree
function, which
uses the
underlying tree
structure of
PersistentVector to
break jobs into
tasks.

join

joinjoin

join

136

worker deques current tasks completed tasks

fjvtree workers: 4 branching factor: 32 sequential threshold: 32

The core Fork-Join
algorithm in
Clojure is
implemented in
the fjvtree
function, which
uses the
underlying tree
structure of
PersistentVector to
break jobs into
tasks.

The core Fork-Join
algorithm in
Clojure is
implemented in
the fjvtree
function, which
uses the
underlying tree
structure of
PersistentVector to
break jobs into
tasks.

fjvtree workers: 4 branching factor: 32 sequential threshold: 32

join

joinjoin

join

(fn [coll]
 (new-node (to-array coll))))

combine-fn: pvmap

join

137

worker deques current tasks completed tasks

The core Fork-Join
algorithm in
Clojure is
implemented in
the fjvtree
function, which
uses the
underlying tree
structure of
PersistentVector to
break jobs into
tasks.

fjvtree workers: 4 branching factor: 32 sequential threshold: 32

join

joinjoin

join

(fn [coll]
 (reduce f coll))

combine-fn: pvreduce

join

138

worker deques current tasks completed tasks

join

joinjoin

join

139

worker deques current tasks completed tasks

fjvtree workers: 4 branching factor: 32 sequential threshold: 32

The core Fork-Join
algorithm in
Clojure is
implemented in
the fjvtree
function, which
uses the
underlying tree
structure of
PersistentVector to
break jobs into
tasks.

join

140

worker deques current tasks completed tasks

fjvtree workers: 4 branching factor: 32 sequential threshold: 32

The core Fork-Join
algorithm in
Clojure is
implemented in
the fjvtree
function, which
uses the
underlying tree
structure of
PersistentVector to
break jobs into
tasks.

worker deques current tasks completed tasks

128

141

fjvtree workers: 4 branching factor: 32 sequential threshold: 32

The core Fork-Join
algorithm in
Clojure is
implemented in
the fjvtree
function, which
uses the
underlying tree
structure of
PersistentVector to
break jobs into
tasks.

pvmap
performance characteristics

142

143

compared to map (2 cores)pvmap

Tf < 0.05 msec

0.05 < Tf < 0.1 msec

Tf > 0.1 msec

* results are the median of 50 samples, where a test function was pvmapped over a vector of 100 values

144

compared to map (2 cores)pvmap vs pmap

Tf < 0.05 msec

0.05 < Tf < 0.1 msec

Tf > 0.1 msec

* results are the median of 50 samples, where a test function was p*mapped over a vector of 100 values

pvreduce
performance characteristics

145

146

compared to reduce (2 cores)pvreduce

Tf < 0.05 msec

0.05 < Tf < 0.1 msec

Tf > 0.1 msec

* results are the median of 50 samples, where a test function was pvreduced over a vector of 100 values

pvreduce examples
implementing pvfilter

147

148

using pvreduceparallel sum

(pvreduce + [1 2 3 4 5 6 7 8 9 .. 128])

(pvreduce + [1 2 3 4 5 6 7 8 9 .. 128])

(reduce + (reduce + [1 2 3 4 5 .. 32])
 (reduce + [33 33 34 35 .. 64])
 (reduce + [65 66 67 68 .. 96])
 (reduce + [97 98 99 100 .. 128]))

149

using pvreduceparallel sum

(pvreduce + [1 2 3 4 5 6 7 8 9 .. 128])

(reduce + (reduce + [1 2 3 4 5 .. 32])
 (reduce + [33 33 34 35 .. 64])
 (reduce + [65 66 67 68 .. 96])
 (reduce + [97 98 99 100 .. 128]))

(reduce + [528 1552 2576 3600])

150

using pvreduceparallel sum

(pvreduce + [1 2 3 4 5 6 7 8 9 .. 128])

(reduce + (reduce + [1 2 3 4 5 .. 32])
 (reduce + [33 33 34 35 .. 64])
 (reduce + [65 66 67 68 .. 96])
 (reduce + [97 98 99 100 .. 128]))

(reduce + [528 1552 2576 3600])

151

8256

using pvreduceparallel sum

(pvfilter even? [1 2 3 4 5 6 7 8 9 .. 128])

(defn pvfilter [pred v]
 (letfn [(filt [v x] (if (pred x) (conj v x) v))]
 (pvreduce filt [] v)

152

using pvreduceparallel filter

(pvfilter even? [1 2 3 4 5 6 7 8 9 .. 128])

(defn pvfilter [pred v]
 (letfn [(filt [v x] (if (pred x) (conj v x) v))]
 (pvreduce filt [] v)

(reduce filt (reduce filt [] [1 2 3 4 .. 32])
 (reduce filt [] [33 34 35 36 .. 64])
 (reduce filt [] [65 66 67 68 .. 96])
 (reduce filt [] [97 98 99 100 .. 128]))

153

using pvreduceparallel filter

(reduce filt (reduce filt [] [1 2 3 4 .. 32])
 (reduce filt [] [33 34 35 36 .. 64])
 (reduce filt [] [65 66 67 68 .. 96])
 (reduce filt [] [97 98 99 100 .. 128]))

(pvfilter even? [1 2 3 4 5 6 7 8 9 .. 128])

(defn pvfilter [pred v]
 (letfn [(filt [v x] (if (pred x) (conj v x) v))]
 (pvreduce filt [] v)

154

(reduce filt [[2 4 6 8 .. 32]
 [34 36 38 40 .. 64]
 [66 68 70 72 .. 96]
 [98 100 102 104 .. 128]])

using pvreduceparallel filter

(reduce filt (reduce filt [] [1 2 3 4 .. 32])
 (reduce filt [] [33 34 35 36 .. 64])
 (reduce filt [] [65 66 67 68 .. 96])
 (reduce filt [] [97 98 99 100 .. 128]))

(pvfilter even? [1 2 3 4 5 6 7 8 9 .. 128])

(defn pvfilter [pred v]
 (letfn [(filt [v x] (if (pred x) (conj v x) v))]
 (pvreduce filt [] v)

(reduce filt [[2 4 6 8 .. 32]
 [34 36 38 40 .. 64]
 [66 68 70 72 .. 96]
 [98 100 102 104 .. 128]])

155

java.lang.ClassCastException: clojure.lang.PersistentVector cannot
be cast to java.lang.Number

using pvreduceparallel filter

156

(pvfilter even? [1 2 3 4 5 6 7 8 9 .. 128])

(defn pvfilter [pred v]
 (letfn [(par-filt [v x]
 (cond
 (vector? x) (apply reduce conj v x)
 (even? x) (conj v x)
 :else v))]
 (pvreduce par-filt [] v))

using pvreduceparallel filter

(pvfilter even? [1 2 3 4 5 6 7 8 9 .. 128])

(defn pvfilter [pred v]
 (letfn [(par-filt [v x]
 (cond
 (vector? x) (apply reduce conj v x)
 (even? x) (conj v x)
 :else v))]
 (pvreduce par-filt [] v))

(reduce par-filt (reduce par-filt [] [1 2 3 4 .. 32])
 (reduce par-filt [] [33 34 35 36 .. 64])
 (reduce par-filt [] [65 66 67 68 .. 96])
 (reduce par-filt [] [97 98 99 100 .. 128]))

157

using pvreduceparallel filter

(reduce par-filt (reduce par-filt [] [1 2 3 4 .. 32])
 (reduce par-filt [] [33 34 35 36 .. 64])
 (reduce par-filt [] [65 66 67 68 .. 96])
 (reduce par-filt [] [97 98 99 100 .. 128]))

(pvfilter even? [1 2 3 4 5 6 7 8 9 .. 128])

(defn pvfilter [pred v]
 (letfn [(par-filt [v x]
 (cond
 (vector? x) (apply reduce conj v x)
 (even? x) (conj v x)
 :else v))]
 (pvreduce par-filt [] v))

(apply reduce conj [[2 4 6 8 .. 32]
 [34 36 38 40 .. 64]
 [66 68 70 72 .. 96]
 [98 100 102 104 .. 128]])

158

using pvreduceparallel filter

(reduce par-filt (reduce par-filt [] [1 2 3 4 .. 32])
 (reduce par-filt [] [33 34 35 36 .. 64])
 (reduce par-filt [] [65 66 67 68 .. 96])
 (reduce par-filt [] [97 98 99 100 .. 128]))

(apply reduce conj [[2 4 6 8 .. 32]
 [34 36 38 40 .. 64]
 [66 68 70 72 .. 96]
 [98 100 102 104 .. 128]])

(pvfilter even? [1 2 3 4 5 6 7 8 9 .. 128])

(defn pvfilter [pred v]
 (letfn [(par-filt [v x]
 (cond
 (vector? x) (apply reduce conj v x)
 (even? x) (conj v x)
 :else v))]
 (pvreduce par-filt [] v))

159

[2 4 6 8 .. 128]

using pvreduceparallel filter

pvfilter
performance characteristics

160

161

compared to filter with 2 corespvfilter

Tf < 0.05 msec

0.05 < Tf < 0.1 msec

Tf > 0.1 msec

* results are the median of 50 samples, where a test predicate was pvfiltered over a vector of 100 values

162

references

1. Brian Goetz Fork/Join talk: http://www.infoq.com/presentations/brian-goetz-concurrent-parallel

2. Fork/Join API: http://gee.cs.oswego.edu/dl/jsr166/dist/jsr166ydocs/

3. Developer’s Works article: http://www.ibm.com/developerworks/java/library/j-jtp11137.html

4. Java Concurrency Wiki: http://artisans-serverintellect-com.si-eioswww6.com/default.asp?W1

5. JVM summit slides: http://wiki.jvmlangsummit.com/images/f/f0/Lea-fj-jul10.pdf

6. Fork/Join Paper: http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.42.1918&rep=rep1&type=pdf

http://www.infoq.com/presentations/brian-goetz-concurrent-parallel
http://www.infoq.com/presentations/brian-goetz-concurrent-parallel
http://gee.cs.oswego.edu/dl/jsr166/dist/jsr166ydocs/
http://gee.cs.oswego.edu/dl/jsr166/dist/jsr166ydocs/
http://www.ibm.com/developerworks/java/library/j-jtp11137.html
http://www.ibm.com/developerworks/java/library/j-jtp11137.html
http://artisans-serverintellect-com.si-eioswww6.com/default.asp?W1
http://artisans-serverintellect-com.si-eioswww6.com/default.asp?W1
http://wiki.jvmlangsummit.com/images/f/f0/Lea-fj-jul10.pdf
http://wiki.jvmlangsummit.com/images/f/f0/Lea-fj-jul10.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.42.1918&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.42.1918&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.42.1918&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.42.1918&rep=rep1&type=pdf

questions?

163

thank you

165

(pvfreq [:foo :bar :baz :bar .. :foo])

(defn pvfreq [x]
 (letfn [(par-freq [m x]
 (if (map? x)
 (merge-with #(+ %1 %2) m x)
 (update-in m [x] #(if % 1 (inc %)))))]
 (pvreduce par-freq {} x)

using pvreduceparallel frequency

(pvfreq [:foo :bar :baz :bar .. :foo])

(defn pvfreq [x]
 (letfn [(par-freq [m x]
 (if (map? x)
 (merge-with #(+ %1 %2) m x)
 (update-in m [x] #(if % 1 (inc %)))))]
 (pvreduce par-freq {} x)

166

(reduce par-freq (reduce par-freq {} [:foo :foo .. :bar])
 (reduce par-freq {} [:bar :foo .. :foo])
 (reduce par-freq {} [:baz :bar .. :foo])
 (reduce par-freq {} [:bar :baz .. :baz]))

using pvreduceparallel frequency

(reduce par-freq (reduce par-freq {} [:foo :foo .. :bar])
 (reduce par-freq {} [:bar :foo .. :foo])
 (reduce par-freq {} [:baz :bar .. :foo])
 (reduce par-freq {} [:bar :baz .. :baz]))

(pvfreq [:foo :bar :baz :bar .. :foo])

(defn pvfreq [x]
 (letfn [(par-freq [m x]
 (if (map? x)
 (merge-with #(+ %1 %2) m x)
 (update-in m [x] #(if % 1 (inc %)))))]
 (pvreduce par-freq {} x)

167

(reduce par-freq [{:foo 15, :bar 10, :baz 7}
 {:foo 10, :bar 12, :baz 5}
 {:foo 7, :bar 14, :baz 11}
 {:foo 12, :bar 10, :baz 10}])

using pvreduceparallel frequency

(reduce par-freq (reduce par-freq {} [:foo :foo .. :bar])
 (reduce par-freq {} [:bar :foo .. :foo])
 (reduce par-freq {} [:baz :bar .. :foo])
 (reduce par-freq {} [:bar :baz .. :baz]))

(pvfreq [:foo :bar :baz :bar .. :foo])

(defn pvfreq [x]
 (letfn [(par-freq [m x]
 (if (map? x)
 (merge-with #(+ %1 %2) m x)
 (update-in m [x] #(if % 1 (inc %)))))]
 (pvreduce par-freq {} x)

(reduce par-freq [{:foo 15, :bar 10, :baz 7}
 {:foo 10, :bar 12, :baz 5}
 {:foo 7, :bar 14, :baz 11}
 {:foo 12, :bar 10, :baz 10}])

168

{:foo 44, :bar 46, :baz 33}

using pvreduceparallel frequency

